The prospects of cation transfer to chalcogen nucleophiles

IF 1.1 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Canadian Journal of Chemistry Pub Date : 2023-05-11 DOI:10.1139/cjc-2022-0222
B. Chan, S. Shirakawa
{"title":"The prospects of cation transfer to chalcogen nucleophiles","authors":"B. Chan, S. Shirakawa","doi":"10.1139/cjc-2022-0222","DOIUrl":null,"url":null,"abstract":"In this study, we used computational quantum chemistry to investigate the cation affinity for a range of nucleophiles to gauge the possibility of using organochalcogens as catalysts for cation transfer (reference data and geometries are provided in the repository https://github.com/armanderch/ca176 ). In general, the calculated gas-phase cation affinities decrease in the order Cl+ > Br+ > I+ > carbon-centered cation, the anionic nucleophiles have significantly larger cation affinities than the neutral ones, sulfides have larger cation affinities than selenides, and solvation lowers the cation affinities and especially for anionic nucleophiles. These observations are consistent with general chemical intuitions. The energies for the resulting condensed-phase cation transfer reactions show that transferring a carbon-centered cation from a neutral source (e.g., Me2CO3) to a chalcogen nucleophile (e.g., Me2S) is thermochemically viable. However, they are associated with large kinetic barriers. Overall, we find that SeMeC6H5 may be a suitable catalyst for transferring a carbon-centered cation from an active source such as MeCO3R or MeSO4R. In this study, we also find that double-hybrid DFT methods, e.g., DSD-PBEP86 to be reasonable for the study of these cation transfer processes.","PeriodicalId":9420,"journal":{"name":"Canadian Journal of Chemistry","volume":"5 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1139/cjc-2022-0222","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we used computational quantum chemistry to investigate the cation affinity for a range of nucleophiles to gauge the possibility of using organochalcogens as catalysts for cation transfer (reference data and geometries are provided in the repository https://github.com/armanderch/ca176 ). In general, the calculated gas-phase cation affinities decrease in the order Cl+ > Br+ > I+ > carbon-centered cation, the anionic nucleophiles have significantly larger cation affinities than the neutral ones, sulfides have larger cation affinities than selenides, and solvation lowers the cation affinities and especially for anionic nucleophiles. These observations are consistent with general chemical intuitions. The energies for the resulting condensed-phase cation transfer reactions show that transferring a carbon-centered cation from a neutral source (e.g., Me2CO3) to a chalcogen nucleophile (e.g., Me2S) is thermochemically viable. However, they are associated with large kinetic barriers. Overall, we find that SeMeC6H5 may be a suitable catalyst for transferring a carbon-centered cation from an active source such as MeCO3R or MeSO4R. In this study, we also find that double-hybrid DFT methods, e.g., DSD-PBEP86 to be reasonable for the study of these cation transfer processes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
阳离子向亲核试剂转移的前景
在这项研究中,我们使用计算量子化学来研究阳离子对一系列亲核试剂的亲和力,以衡量使用有机氧原作为阳离子转移催化剂的可能性(参考数据和几何图形在存储库https://github.com/armanderch/ca176中提供)。总的来说,计算得到的气相阳离子亲和度依次为Cl+ > Br+ > I+ >碳中心阳离子,阴离子亲核试剂的阳离子亲和度明显大于中性试剂,硫化物的阳离子亲和度明显大于硒化物,溶剂化降低了阳离子亲和度,尤其是阴离子亲核试剂。这些观察结果与一般的化学直觉一致。缩合相阳离子转移反应的能量表明,将碳中心阳离子从中性源(如Me2CO3)转移到亲硫试剂(如Me2S)是热化学上可行的。然而,它们与大的动力障碍有关。总的来说,我们发现SeMeC6H5可能是一种合适的催化剂,用于从MeCO3R或MeSO4R等活性源转移碳中心阳离子。在本研究中,我们还发现双杂化DFT方法,如DSD-PBEP86,对于这些阳离子转移过程的研究是合理的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Canadian Journal of Chemistry
Canadian Journal of Chemistry 化学-化学综合
CiteScore
1.90
自引率
9.10%
发文量
99
审稿时长
1 months
期刊介绍: Published since 1929, the Canadian Journal of Chemistry reports current research findings in all branches of chemistry. It includes the traditional areas of analytical, inorganic, organic, and physical-theoretical chemistry and newer interdisciplinary areas such as materials science, spectroscopy, chemical physics, and biological, medicinal and environmental chemistry. Articles describing original research are welcomed.
期刊最新文献
The occurrence of cytokinins and their biosynthesis pathways in epithelioma papulosum cyprini cells A computational study of the structures and base-pairing properties of pyrrolizidine alkaloid-derived DNA adducts Synthesis of a Fluorescent Chemical Probe for Imaging of L-Type Voltage Gated Calcium Channels Synthesis of two air and moisture-stable copper(II)-N-heterocyclic carbene complexes Sex differences in mouse placental metabolite profiles: an NMR metabolomics study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1