{"title":"Is there a loophole in Dollo's law? A DevoEvo perspective on irreversibility (of felid dentition)","authors":"Vincent J. Lynch","doi":"10.1002/jez.b.23163","DOIUrl":null,"url":null,"abstract":"<p>There is a longstanding interest in whether the loss of complex characters is reversible (so-called “Dollo's law”). Reevolution has been suggested for numerous traits but among the first was Kurtén, who proposed that the presence of the second lower molar (M<sub>2</sub>) of the <i>Eurasian lynx</i> (<i>Lynx lynx</i>) was a violation of Dollo's law because all other Felids lack M<sub>2</sub>. While an early and often cited example for the reevolution of a complex trait, Kurtén and Werdelin used an <i>ad hoc</i> parsimony argument to support their. Here I revisit the evidence that M<sub>2</sub> reevolved lynx using explicit parsimony and maximum likelihood models of character evolution and find strong evidence that Kurtén and Werdelin were correct—M<sub>2</sub> reevolved in <i>E. lynx</i>. Next, I explore the developmental mechanisms which may explain this violation of Dollo's law and suggest that the reevolution of lost complex traits may arise from the reevolution of cis-regulatory elements and protein−protein interactions, which have a longer half-life after silencing that protein coding genes. Finally, I present a developmental model to explain the reevolution M<sub>2</sub> in <i>E. lynx</i>, which suggest that the developmental programs required for the establishment of serially homologous characters may never really be lost so long as a single instance of the character remains—thus the gain and loss and regain of serially homologous characters, such mammalian molars, may be developmentally and evolutionarily “simple.”</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jez.b.23163","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jez.b.23163","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
There is a longstanding interest in whether the loss of complex characters is reversible (so-called “Dollo's law”). Reevolution has been suggested for numerous traits but among the first was Kurtén, who proposed that the presence of the second lower molar (M2) of the Eurasian lynx (Lynx lynx) was a violation of Dollo's law because all other Felids lack M2. While an early and often cited example for the reevolution of a complex trait, Kurtén and Werdelin used an ad hoc parsimony argument to support their. Here I revisit the evidence that M2 reevolved lynx using explicit parsimony and maximum likelihood models of character evolution and find strong evidence that Kurtén and Werdelin were correct—M2 reevolved in E. lynx. Next, I explore the developmental mechanisms which may explain this violation of Dollo's law and suggest that the reevolution of lost complex traits may arise from the reevolution of cis-regulatory elements and protein−protein interactions, which have a longer half-life after silencing that protein coding genes. Finally, I present a developmental model to explain the reevolution M2 in E. lynx, which suggest that the developmental programs required for the establishment of serially homologous characters may never really be lost so long as a single instance of the character remains—thus the gain and loss and regain of serially homologous characters, such mammalian molars, may be developmentally and evolutionarily “simple.”
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.