Exploiting vector instructions with generalized stream fusion

G. Mainland, Roman Leshchinskiy, S. P. Jones
{"title":"Exploiting vector instructions with generalized stream fusion","authors":"G. Mainland, Roman Leshchinskiy, S. P. Jones","doi":"10.1145/2500365.2500601","DOIUrl":null,"url":null,"abstract":"Stream fusion is a powerful technique for automatically transforming high-level sequence-processing functions into efficient implementations. It has been used to great effect in Haskell libraries for manipulating byte arrays, Unicode text, and unboxed vectors. However, some operations, like vector append, still do not perform well within the standard stream fusion framework. Others, like SIMD computation using the SSE and AVX instructions available on modern x86 chips, do not seem to fit in the framework at all. In this paper we introduce generalized stream fusion, which solves these issues. The key insight is to bundle together multiple stream representations, each tuned for a particular class of stream consumer. We also describe a stream representation suited for efficient computation with SSE instructions. Our ideas are implemented in modified versions of the GHC compiler and vector library. Benchmarks show that high-level Haskell code written using our compiler and libraries can produce code that is faster than both compiler- and hand-vectorized C.","PeriodicalId":20504,"journal":{"name":"Proceedings of the 18th ACM SIGPLAN international conference on Functional programming","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2013-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 18th ACM SIGPLAN international conference on Functional programming","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2500365.2500601","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

Stream fusion is a powerful technique for automatically transforming high-level sequence-processing functions into efficient implementations. It has been used to great effect in Haskell libraries for manipulating byte arrays, Unicode text, and unboxed vectors. However, some operations, like vector append, still do not perform well within the standard stream fusion framework. Others, like SIMD computation using the SSE and AVX instructions available on modern x86 chips, do not seem to fit in the framework at all. In this paper we introduce generalized stream fusion, which solves these issues. The key insight is to bundle together multiple stream representations, each tuned for a particular class of stream consumer. We also describe a stream representation suited for efficient computation with SSE instructions. Our ideas are implemented in modified versions of the GHC compiler and vector library. Benchmarks show that high-level Haskell code written using our compiler and libraries can produce code that is faster than both compiler- and hand-vectorized C.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用广义流融合技术开发向量指令
流融合是一种将高级序列处理功能自动转换为高效实现的强大技术。它在Haskell库中用于操作字节数组、Unicode文本和未装箱向量,效果非常好。然而,一些操作,如向量追加,在标准的流融合框架内仍然不能很好地执行。其他的,比如使用现代x86芯片上可用的SSE和AVX指令的SIMD计算,似乎根本不适合这个框架。本文引入广义流融合,解决了这些问题。关键的见解是将多个流表示捆绑在一起,每个表示针对特定的流消费者类进行调优。我们还描述了一种适合于SSE指令高效计算的流表示。我们的想法在修改版本的GHC编译器和矢量库中实现。基准测试表明,使用我们的编译器和库编写的高级Haskell代码可以生成比编译器和手工矢量化C更快的代码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
1ML - core and modules united (F-ing first-class modules) Functional programming for dynamic and large data with self-adjusting computation A theory of gradual effect systems Building embedded systems with embedded DSLs Homotopical patch theory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1