A. Babapoor, B. Mirzayi, Laleh Salehghadimi, Raha Hadi, S. Farhoudian, Meysam Paar
{"title":"Novel CoMnFeO4-MWCNT nanocomposite based on a green synthesized method for supercapacitor applications","authors":"A. Babapoor, B. Mirzayi, Laleh Salehghadimi, Raha Hadi, S. Farhoudian, Meysam Paar","doi":"10.1139/cjc-2022-0117","DOIUrl":null,"url":null,"abstract":"A novel nanocomposite of CoMnFeO4-MWCNT has been synthesized via green and simple hydrothermal method and the structure characterization has been done through FT-IR, X-ray diffraction, scanning electron microscopy, EDX, and high-resolution transmission electron microscopy analysis in this research. Cyclic voltammetry and galvanostatic charge–discharge methods are picked as the strategies to compare their supercapacitor behavior. The specific capacitance of about 1310 F g−1 (at 1 A g−1) in 3 mol L−1 KOH has been recorded for CoMnFeO4-MWCNT nanocomposite when the working voltage is 1.2 V. Moreover, this nanocomposite retains 89% of its initial capacitance after 10 000 charge–discharge cycles. Also, some initial mechanistic studies are performed to achieve a deeper insight into the electrochemical behavior of the nanocomposite implying that the oxidation-reduction process of CoMnFeO4-MWCNT nanocomposite is generally quasi-reversible and diffusion-controlled. From the view of time, coat, and environment, the hydrothermal process is much more reliable and beneficial regarding higher performance.","PeriodicalId":9420,"journal":{"name":"Canadian Journal of Chemistry","volume":"17 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1139/cjc-2022-0117","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A novel nanocomposite of CoMnFeO4-MWCNT has been synthesized via green and simple hydrothermal method and the structure characterization has been done through FT-IR, X-ray diffraction, scanning electron microscopy, EDX, and high-resolution transmission electron microscopy analysis in this research. Cyclic voltammetry and galvanostatic charge–discharge methods are picked as the strategies to compare their supercapacitor behavior. The specific capacitance of about 1310 F g−1 (at 1 A g−1) in 3 mol L−1 KOH has been recorded for CoMnFeO4-MWCNT nanocomposite when the working voltage is 1.2 V. Moreover, this nanocomposite retains 89% of its initial capacitance after 10 000 charge–discharge cycles. Also, some initial mechanistic studies are performed to achieve a deeper insight into the electrochemical behavior of the nanocomposite implying that the oxidation-reduction process of CoMnFeO4-MWCNT nanocomposite is generally quasi-reversible and diffusion-controlled. From the view of time, coat, and environment, the hydrothermal process is much more reliable and beneficial regarding higher performance.
期刊介绍:
Published since 1929, the Canadian Journal of Chemistry reports current research findings in all branches of chemistry. It includes the traditional areas of analytical, inorganic, organic, and physical-theoretical chemistry and newer interdisciplinary areas such as materials science, spectroscopy, chemical physics, and biological, medicinal and environmental chemistry. Articles describing original research are welcomed.