Novel CoMnFeO4-MWCNT nanocomposite based on a green synthesized method for supercapacitor applications

IF 1.1 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY Canadian Journal of Chemistry Pub Date : 2023-04-11 DOI:10.1139/cjc-2022-0117
A. Babapoor, B. Mirzayi, Laleh Salehghadimi, Raha Hadi, S. Farhoudian, Meysam Paar
{"title":"Novel CoMnFeO4-MWCNT nanocomposite based on a green synthesized method for supercapacitor applications","authors":"A. Babapoor, B. Mirzayi, Laleh Salehghadimi, Raha Hadi, S. Farhoudian, Meysam Paar","doi":"10.1139/cjc-2022-0117","DOIUrl":null,"url":null,"abstract":"A novel nanocomposite of CoMnFeO4-MWCNT has been synthesized via green and simple hydrothermal method and the structure characterization has been done through FT-IR, X-ray diffraction, scanning electron microscopy, EDX, and high-resolution transmission electron microscopy analysis in this research. Cyclic voltammetry and galvanostatic charge–discharge methods are picked as the strategies to compare their supercapacitor behavior. The specific capacitance of about 1310 F g−1 (at 1 A g−1) in 3 mol L−1 KOH has been recorded for CoMnFeO4-MWCNT nanocomposite when the working voltage is 1.2 V. Moreover, this nanocomposite retains 89% of its initial capacitance after 10 000 charge–discharge cycles. Also, some initial mechanistic studies are performed to achieve a deeper insight into the electrochemical behavior of the nanocomposite implying that the oxidation-reduction process of CoMnFeO4-MWCNT nanocomposite is generally quasi-reversible and diffusion-controlled. From the view of time, coat, and environment, the hydrothermal process is much more reliable and beneficial regarding higher performance.","PeriodicalId":9420,"journal":{"name":"Canadian Journal of Chemistry","volume":"17 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1139/cjc-2022-0117","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A novel nanocomposite of CoMnFeO4-MWCNT has been synthesized via green and simple hydrothermal method and the structure characterization has been done through FT-IR, X-ray diffraction, scanning electron microscopy, EDX, and high-resolution transmission electron microscopy analysis in this research. Cyclic voltammetry and galvanostatic charge–discharge methods are picked as the strategies to compare their supercapacitor behavior. The specific capacitance of about 1310 F g−1 (at 1 A g−1) in 3 mol L−1 KOH has been recorded for CoMnFeO4-MWCNT nanocomposite when the working voltage is 1.2 V. Moreover, this nanocomposite retains 89% of its initial capacitance after 10 000 charge–discharge cycles. Also, some initial mechanistic studies are performed to achieve a deeper insight into the electrochemical behavior of the nanocomposite implying that the oxidation-reduction process of CoMnFeO4-MWCNT nanocomposite is generally quasi-reversible and diffusion-controlled. From the view of time, coat, and environment, the hydrothermal process is much more reliable and beneficial regarding higher performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于绿色合成方法的新型CoMnFeO4-MWCNT纳米复合材料应用于超级电容器
本研究采用绿色简单水热法合成了一种新型的CoMnFeO4-MWCNT纳米复合材料,并通过FT-IR、x射线衍射、扫描电镜、EDX和高分辨率透射电镜分析对其结构进行了表征。选择循环伏安法和恒流充放电法作为策略来比较它们的超级电容器性能。在3mol L−1 KOH溶液中,当工作电压为1.2 V时,CoMnFeO4-MWCNT纳米复合材料的比电容约为1310 F g−1 (1a g−1)。此外,这种纳米复合材料在10000次充放电循环后仍保持89%的初始电容。此外,还进行了一些初步的机理研究,以更深入地了解纳米复合材料的电化学行为,这意味着CoMnFeO4-MWCNT纳米复合材料的氧化还原过程通常是准可逆的和扩散控制的。从时间、涂层和环境的角度来看,水热法更可靠、更有利、性能更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Canadian Journal of Chemistry
Canadian Journal of Chemistry 化学-化学综合
CiteScore
1.90
自引率
9.10%
发文量
99
审稿时长
1 months
期刊介绍: Published since 1929, the Canadian Journal of Chemistry reports current research findings in all branches of chemistry. It includes the traditional areas of analytical, inorganic, organic, and physical-theoretical chemistry and newer interdisciplinary areas such as materials science, spectroscopy, chemical physics, and biological, medicinal and environmental chemistry. Articles describing original research are welcomed.
期刊最新文献
The occurrence of cytokinins and their biosynthesis pathways in epithelioma papulosum cyprini cells A computational study of the structures and base-pairing properties of pyrrolizidine alkaloid-derived DNA adducts Synthesis of a Fluorescent Chemical Probe for Imaging of L-Type Voltage Gated Calcium Channels Synthesis of two air and moisture-stable copper(II)-N-heterocyclic carbene complexes Sex differences in mouse placental metabolite profiles: an NMR metabolomics study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1