{"title":"Flow Measurement in Support of Carbon Capture, Utilisation and Storage","authors":"Dr. C. Mills, Dr. G. Chinello","doi":"10.21014/tc9-2022.157","DOIUrl":null,"url":null,"abstract":"Carbon Capture, Utilisation and Storage (CCUS) is a key United Kingdom Government strategy for reducing carbon dioxide (CO 2 ) emissions to combat the potentially catastrophic effects of climate change. The UK aims to capture and store 10 million tonnes of CO 2 each year by 2030. Across the entire CCUS value chain, each of the stages require accurate measurement of CO 2 at temperatures, pressures, flow rates and fluid phases that must be validated through a credible traceability chain for flow. This traceability chain would provide the underpinning confidence in meter performance, financial and fiscal transactions and, critically, environmental compliance. The UK-adopted version of the EU Emissions Trading System (EU ETS) has specified an uncertainty value for CO 2 flow measurement that must be adhered to. Accordingly, the provision of accurate and traceable flow measurement of CO 2 in the UK and internationally will be essential for the successful operation of CCUS. Unfortunately, there are currently no CO 2 flow measurement facilities in the world that are capable of traceable flow calibrations of gas phase, liquid/dense phase and supercritical phase CO 2 that replicate real-world CCUS conditions. The absence of traceable CO 2 gas and liquid flow measurement facilities and accompanying national or international flow measurement standards could seriously impede the widespread deployment of CCUS. These significant barriers could potentially jeopardise the successful implementation of CCUS projects worldwide, not least because these will be governed by legislation and environmental regulations requiring traceable measurement. This paper presents an overview of the current traceability chain for CO 2 flow measurement in the UK and globally. Current challenges will be detailed along with potential solutions and opportunities for the measurement community.","PeriodicalId":62400,"journal":{"name":"流量控制、测量及可视化(英文)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"流量控制、测量及可视化(英文)","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.21014/tc9-2022.157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Carbon Capture, Utilisation and Storage (CCUS) is a key United Kingdom Government strategy for reducing carbon dioxide (CO 2 ) emissions to combat the potentially catastrophic effects of climate change. The UK aims to capture and store 10 million tonnes of CO 2 each year by 2030. Across the entire CCUS value chain, each of the stages require accurate measurement of CO 2 at temperatures, pressures, flow rates and fluid phases that must be validated through a credible traceability chain for flow. This traceability chain would provide the underpinning confidence in meter performance, financial and fiscal transactions and, critically, environmental compliance. The UK-adopted version of the EU Emissions Trading System (EU ETS) has specified an uncertainty value for CO 2 flow measurement that must be adhered to. Accordingly, the provision of accurate and traceable flow measurement of CO 2 in the UK and internationally will be essential for the successful operation of CCUS. Unfortunately, there are currently no CO 2 flow measurement facilities in the world that are capable of traceable flow calibrations of gas phase, liquid/dense phase and supercritical phase CO 2 that replicate real-world CCUS conditions. The absence of traceable CO 2 gas and liquid flow measurement facilities and accompanying national or international flow measurement standards could seriously impede the widespread deployment of CCUS. These significant barriers could potentially jeopardise the successful implementation of CCUS projects worldwide, not least because these will be governed by legislation and environmental regulations requiring traceable measurement. This paper presents an overview of the current traceability chain for CO 2 flow measurement in the UK and globally. Current challenges will be detailed along with potential solutions and opportunities for the measurement community.