Delving into Salient Object Subitizing and Detection

Shengfeng He, Jianbo Jiao, Xiaodan Zhang, Guoqiang Han, Rynson W. H. Lau
{"title":"Delving into Salient Object Subitizing and Detection","authors":"Shengfeng He, Jianbo Jiao, Xiaodan Zhang, Guoqiang Han, Rynson W. H. Lau","doi":"10.1109/ICCV.2017.120","DOIUrl":null,"url":null,"abstract":"Subitizing (i.e., instant judgement on the number) and detection of salient objects are human inborn abilities. These two tasks influence each other in the human visual system. In this paper, we delve into the complementarity of these two tasks. We propose a multi-task deep neural network with weight prediction for salient object detection, where the parameters of an adaptive weight layer are dynamically determined by an auxiliary subitizing network. The numerical representation of salient objects is therefore embedded into the spatial representation. The proposed joint network can be trained end-to-end using backpropagation. Experiments show the proposed multi-task network outperforms existing multi-task architectures, and the auxiliary subitizing network provides strong guidance to salient object detection by reducing false positives and producing coherent saliency maps. Moreover, the proposed method is an unconstrained method able to handle images with/without salient objects. Finally, we show state-of-theart performance on different salient object datasets.","PeriodicalId":6559,"journal":{"name":"2017 IEEE International Conference on Computer Vision (ICCV)","volume":"5 1","pages":"1059-1067"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"51","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2017.120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 51

Abstract

Subitizing (i.e., instant judgement on the number) and detection of salient objects are human inborn abilities. These two tasks influence each other in the human visual system. In this paper, we delve into the complementarity of these two tasks. We propose a multi-task deep neural network with weight prediction for salient object detection, where the parameters of an adaptive weight layer are dynamically determined by an auxiliary subitizing network. The numerical representation of salient objects is therefore embedded into the spatial representation. The proposed joint network can be trained end-to-end using backpropagation. Experiments show the proposed multi-task network outperforms existing multi-task architectures, and the auxiliary subitizing network provides strong guidance to salient object detection by reducing false positives and producing coherent saliency maps. Moreover, the proposed method is an unconstrained method able to handle images with/without salient objects. Finally, we show state-of-theart performance on different salient object datasets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
突出对象的细分与检测研究
主观化(即对数字的即时判断)和发现显著物体是人类与生俱来的能力。这两项任务在人类视觉系统中相互影响。在本文中,我们深入研究了这两个任务的互补性。提出了一种具有权重预测的多任务深度神经网络用于显著目标检测,其中自适应权重层的参数由辅助子化网络动态确定。因此,突出对象的数字表示被嵌入到空间表示中。该联合网络可以通过反向传播进行端到端训练。实验表明,本文提出的多任务网络优于现有的多任务架构,并且辅助细分网络通过减少误报和生成连贯的显著性图,为显著性目标检测提供了强有力的指导。此外,该方法是一种无约束的方法,能够处理具有/不具有显著目标的图像。最后,我们展示了在不同显著对象数据集上的最新性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Visual Odometry for Pixel Processor Arrays Rolling Shutter Correction in Manhattan World Sketching with Style: Visual Search with Sketches and Aesthetic Context Active Learning for Human Pose Estimation Attribute-Enhanced Face Recognition with Neural Tensor Fusion Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1