Study for metastasis prediction of head and neck squamous cell carcinomas using RNA-sequencing data and PET image feature

S. Woo, I. Lim, Jingyu Kim, Byung-chul Kim
{"title":"Study for metastasis prediction of head and neck squamous cell carcinomas using RNA-sequencing data and PET image feature","authors":"S. Woo, I. Lim, Jingyu Kim, Byung-chul Kim","doi":"10.1117/12.2582020","DOIUrl":null,"url":null,"abstract":"The aim of this study is to predict the head and neck squamous cell carcinomas (HNSCs) patient metastasis using PET radiomics with RNA-sequencing data. We performed Gene set enrichment analysis (GSEA) and identified 72 genes have important roles as Epithelial mesenchymal transition (EMT) functional modules by the mount of gene expression pattern during the cancer metastasis. The 47 features were extracted form PET images by local image features extraction. GLZLM_LZHGE and CXCL6, SHAPE_Volume and CLCL6, GLCM_Energy and COL11A1 identified as a high relation by P-value. The test and training value PETr and FEG were 0.45 and 0.50 in LR and 0.75 and 0.83 in GB, respectively.","PeriodicalId":57954,"journal":{"name":"影像研究与医学应用","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"影像研究与医学应用","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/12.2582020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The aim of this study is to predict the head and neck squamous cell carcinomas (HNSCs) patient metastasis using PET radiomics with RNA-sequencing data. We performed Gene set enrichment analysis (GSEA) and identified 72 genes have important roles as Epithelial mesenchymal transition (EMT) functional modules by the mount of gene expression pattern during the cancer metastasis. The 47 features were extracted form PET images by local image features extraction. GLZLM_LZHGE and CXCL6, SHAPE_Volume and CLCL6, GLCM_Energy and COL11A1 identified as a high relation by P-value. The test and training value PETr and FEG were 0.45 and 0.50 in LR and 0.75 and 0.83 in GB, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
应用rna测序数据和PET图像特征预测头颈部鳞状细胞癌转移的研究
本研究的目的是利用PET放射组学和rna测序数据预测头颈部鳞状细胞癌(HNSCs)患者的转移。我们通过基因集富集分析(GSEA),通过肿瘤转移过程中基因表达模式的增加,鉴定出72个基因在上皮间充质转化(EMT)功能模块中起重要作用。通过局部特征提取,从PET图像中提取出47个特征。GLZLM_LZHGE与CXCL6、SHAPE_Volume与CLCL6、GLCM_Energy与COL11A1通过p值鉴定为高相关。试验和训练值PETr和FEG在LR和GB组分别为0.45和0.50和0.75和0.83。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
17946
期刊介绍:
期刊最新文献
Front Matter: Volume 12469 A fully digitally integrated workflow for brain MRI Point Cloud generation and augmented reality 3D model visualization Federated learning: how the world's biggest federation is training state-of-the-art brain tumor segmentation models Multi-view graph neural network for interpreting multi-omics biomarkers in Schizophrenia Deep learning pipeline for brain MRI acquisition type classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1