Caiyun Wei, Wei Xu, Shurui Ji, Ruiyun Huang, Junyang Liu, Wenqiu Su, Jie Bai, Jiale Huang, Wenjing Hong
{"title":"Single-cluster electronics using metallic clusters: Fabrications, regulations, and applications","authors":"Caiyun Wei, Wei Xu, Shurui Ji, Ruiyun Huang, Junyang Liu, Wenqiu Su, Jie Bai, Jiale Huang, Wenjing Hong","doi":"10.1007/s12274-023-5774-z","DOIUrl":null,"url":null,"abstract":"<div><p>Metallic clusters, ranging from 1 to 2 nm in size, have emerged as promising candidates for creating nanoelectronic devices at the single-cluster level. With the intermediate quantum properties between metals and semiconductors, these metallic clusters offer an alternative pathway to silicon-based electronics and organic molecules for miniaturized electronics with dimensions below 5 nm. Significant progress has been made in studies of single-cluster electronic devices. However, a clear guide for selecting, synthesizing, and fabricating functional single-cluster electronic devices is still required. This review article provides a comprehensive overview of single-cluster electronic devices, including the mechanisms of electron transport, the fabrication of devices, and the regulations of electron transport properties. Furthermore, we discuss the challenges and future directions for single-cluster electronic devices and their potential applications.\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":713,"journal":{"name":"Nano Research","volume":"17 :","pages":"65 - 78"},"PeriodicalIF":9.0000,"publicationDate":"2023-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Research","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12274-023-5774-z","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Metallic clusters, ranging from 1 to 2 nm in size, have emerged as promising candidates for creating nanoelectronic devices at the single-cluster level. With the intermediate quantum properties between metals and semiconductors, these metallic clusters offer an alternative pathway to silicon-based electronics and organic molecules for miniaturized electronics with dimensions below 5 nm. Significant progress has been made in studies of single-cluster electronic devices. However, a clear guide for selecting, synthesizing, and fabricating functional single-cluster electronic devices is still required. This review article provides a comprehensive overview of single-cluster electronic devices, including the mechanisms of electron transport, the fabrication of devices, and the regulations of electron transport properties. Furthermore, we discuss the challenges and future directions for single-cluster electronic devices and their potential applications.
期刊介绍:
Nano Research is a peer-reviewed, international and interdisciplinary research journal that focuses on all aspects of nanoscience and nanotechnology. It solicits submissions in various topical areas, from basic aspects of nanoscale materials to practical applications. The journal publishes articles on synthesis, characterization, and manipulation of nanomaterials; nanoscale physics, electrical transport, and quantum physics; scanning probe microscopy and spectroscopy; nanofluidics; nanosensors; nanoelectronics and molecular electronics; nano-optics, nano-optoelectronics, and nano-photonics; nanomagnetics; nanobiotechnology and nanomedicine; and nanoscale modeling and simulations. Nano Research offers readers a combination of authoritative and comprehensive Reviews, original cutting-edge research in Communication and Full Paper formats. The journal also prioritizes rapid review to ensure prompt publication.