Context-Dependent Compensation Scheme to Reduce Trajectory Execution Errors for Industrial Manipulators

P. Bhatt, P. Rajendran, K. Mckay, Satyandra K. Gupta
{"title":"Context-Dependent Compensation Scheme to Reduce Trajectory Execution Errors for Industrial Manipulators","authors":"P. Bhatt, P. Rajendran, K. Mckay, Satyandra K. Gupta","doi":"10.1109/ICRA.2019.8793876","DOIUrl":null,"url":null,"abstract":"Currently, automatically generated trajectories cannot be directly used on tasks that require high execution accuracies due to errors accused by inaccuracies in the robot model, actuator errors, and controller limitations. These trajectories often need manual refinement. This is not economically viable on low production volume applications. Unfortunately, execution errors are dependent on the nature of the trajectory and end-effector loads, and therefore devising a general purpose automated compensation scheme for reducing trajectory errors is not possible. This paper presents a method for analyzing the given trajectory, executing an exploratory physical run for a small portion of the given trajectory, and learning a compensation scheme based on the measured data. The learned compensation scheme is context-dependent and can be used to reduce the execution error. We have demonstrated the feasibility of this approach by conducting physical experiments.","PeriodicalId":6730,"journal":{"name":"2019 International Conference on Robotics and Automation (ICRA)","volume":"9 1","pages":"5578-5584"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA.2019.8793876","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

Currently, automatically generated trajectories cannot be directly used on tasks that require high execution accuracies due to errors accused by inaccuracies in the robot model, actuator errors, and controller limitations. These trajectories often need manual refinement. This is not economically viable on low production volume applications. Unfortunately, execution errors are dependent on the nature of the trajectory and end-effector loads, and therefore devising a general purpose automated compensation scheme for reducing trajectory errors is not possible. This paper presents a method for analyzing the given trajectory, executing an exploratory physical run for a small portion of the given trajectory, and learning a compensation scheme based on the measured data. The learned compensation scheme is context-dependent and can be used to reduce the execution error. We have demonstrated the feasibility of this approach by conducting physical experiments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
情境相关补偿方案减少工业机械臂轨迹执行误差
目前,由于机器人模型不准确、执行器错误和控制器限制导致的错误,自动生成的轨迹不能直接用于要求高执行精度的任务。这些轨迹通常需要人工改进。在低产量应用中,这在经济上是不可行的。不幸的是,执行误差取决于轨迹和末端执行器载荷的性质,因此设计一种通用的自动补偿方案来减少轨迹误差是不可能的。本文提出了一种分析给定轨迹,对给定轨迹的一小部分进行探索性物理运行,并根据测量数据学习补偿方案的方法。学习到的补偿方案是上下文相关的,可以用来减少执行误差。我们已经通过物理实验证明了这种方法的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improving collective decision accuracy via time-varying cross-inhibition Design of a Modular Continuum Robot Segment for use in a General Purpose Manipulator* Adaptive H∞ Controller for Precise Manoeuvring of a Space Robot Laparoscopy instrument tracking for single view camera and skill assessment Event-based, Direct Camera Tracking from a Photometric 3D Map using Nonlinear Optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1