Susan E. Martonosi, Martin Gonzalez, Nicolas Oshiro
{"title":"Predicting elite NBA lineups using individual player order statistics","authors":"Susan E. Martonosi, Martin Gonzalez, Nicolas Oshiro","doi":"10.1515/jqas-2022-0039","DOIUrl":null,"url":null,"abstract":"Abstract NBA team managers and owners try to acquire high-performing players. An important consideration in these decisions is how well the new players will perform in combination with their teammates. Our objective is to identify elite five-person lineups, which we define as those having a positive plus-minus per minute (PMM). Using individual player order statistics, our model can identify an elite lineup even if the five players in the lineup have never played together, which can inform player acquisition decisions, salary negotiations, and real-time coaching decisions. We combine seven classification tools into a unanimous consent classifier (all-or-nothing classifier, or ANC) in which a lineup is predicted to be elite only if all seven classifiers predict it to be elite. In this way, we achieve high positive predictive value (i.e., precision), the likelihood that a lineup classified as elite will indeed have a positive PMM. We train and test the model on individual player and lineup data from the 2017–18 season and use the model to predict the performance of lineups drawn from all 30 NBA teams’ 2018–19 regular season rosters. Although the ANC is conservative and misses some high-performing lineups, it achieves high precision and recommends positionally balanced lineups.","PeriodicalId":16925,"journal":{"name":"Journal of Quantitative Analysis in Sports","volume":"26 1","pages":"51 - 71"},"PeriodicalIF":1.1000,"publicationDate":"2023-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Quantitative Analysis in Sports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jqas-2022-0039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"SOCIAL SCIENCES, MATHEMATICAL METHODS","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract NBA team managers and owners try to acquire high-performing players. An important consideration in these decisions is how well the new players will perform in combination with their teammates. Our objective is to identify elite five-person lineups, which we define as those having a positive plus-minus per minute (PMM). Using individual player order statistics, our model can identify an elite lineup even if the five players in the lineup have never played together, which can inform player acquisition decisions, salary negotiations, and real-time coaching decisions. We combine seven classification tools into a unanimous consent classifier (all-or-nothing classifier, or ANC) in which a lineup is predicted to be elite only if all seven classifiers predict it to be elite. In this way, we achieve high positive predictive value (i.e., precision), the likelihood that a lineup classified as elite will indeed have a positive PMM. We train and test the model on individual player and lineup data from the 2017–18 season and use the model to predict the performance of lineups drawn from all 30 NBA teams’ 2018–19 regular season rosters. Although the ANC is conservative and misses some high-performing lineups, it achieves high precision and recommends positionally balanced lineups.
期刊介绍:
The Journal of Quantitative Analysis in Sports (JQAS), an official journal of the American Statistical Association, publishes timely, high-quality peer-reviewed research on the quantitative aspects of professional and amateur sports, including collegiate and Olympic competition. The scope of application reflects the increasing demand for novel methods to analyze and understand data in the growing field of sports analytics. Articles come from a wide variety of sports and diverse perspectives, and address topics such as game outcome models, measurement and evaluation of player performance, tournament structure, analysis of rules and adjudication, within-game strategy, analysis of sporting technologies, and player and team ranking methods. JQAS seeks to publish manuscripts that demonstrate original ways of approaching problems, develop cutting edge methods, and apply innovative thinking to solve difficult challenges in sports contexts. JQAS brings together researchers from various disciplines, including statistics, operations research, machine learning, scientific computing, econometrics, and sports management.