L. A. Bautista Balbás, M. Gil Conesa, Blanca Bautista Balbás, G. Rodríguez Caravaca
{"title":"COVID-19 effective reproduction number determination: an application, and a review of issues and influential factors","authors":"L. A. Bautista Balbás, M. Gil Conesa, Blanca Bautista Balbás, G. Rodríguez Caravaca","doi":"10.1515/em-2020-0048","DOIUrl":null,"url":null,"abstract":"Abstract Objectives An essential indicator of COVID-19 transmission is the effective reproduction number (R t ), the number of cases which an infected individual is expected to infect at a particular point in time; curves of the evolution of R t over time (transmission curves) reflect the impact of preventive measures and whether an epidemic is controlled. Methods We have created a Shiny/R web application (https://alfredob.shinyapps.io/estR0/) with user-selectable features: open data sources with daily COVID-19 incidences from all countries and many regions, customizable preprocessing options (smoothing, proportional increment, etc.), different MonteCarlo-Markov-Chain estimates of the generation time or serial interval distributions and state-of-the-art R t estimation frameworks (EpiEstim, R 0). This application could be used as a tool both to obtain transmission estimates and to perform interactive sensitivity analysis. We have analyzed the impact of these factors on transmission curves. We also have obtained curves at the national and sub-national level and analyzed the impact of epidemic control strategies, superspreading events, socioeconomic factors and outbreaks. Results Reproduction numbers showed earlier anticipation compared to active prevalence indicators (14-day cumulative incidence, overall infectivity). In the sensitivity analysis, the impact of different R t estimation methods was moderate/small, and the impact of different serial interval distributions was very small. We couldn’t find conclusive evidence regarding the impact of alleged superspreading events. As a limitation, dataset quality can limit the reliability of the estimates. Conclusions The thorough review of many examples of COVID-19 transmission curves support the usage of R t estimates as a robust transmission indicator.","PeriodicalId":37999,"journal":{"name":"Epidemiologic Methods","volume":"72 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epidemiologic Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/em-2020-0048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Objectives An essential indicator of COVID-19 transmission is the effective reproduction number (R t ), the number of cases which an infected individual is expected to infect at a particular point in time; curves of the evolution of R t over time (transmission curves) reflect the impact of preventive measures and whether an epidemic is controlled. Methods We have created a Shiny/R web application (https://alfredob.shinyapps.io/estR0/) with user-selectable features: open data sources with daily COVID-19 incidences from all countries and many regions, customizable preprocessing options (smoothing, proportional increment, etc.), different MonteCarlo-Markov-Chain estimates of the generation time or serial interval distributions and state-of-the-art R t estimation frameworks (EpiEstim, R 0). This application could be used as a tool both to obtain transmission estimates and to perform interactive sensitivity analysis. We have analyzed the impact of these factors on transmission curves. We also have obtained curves at the national and sub-national level and analyzed the impact of epidemic control strategies, superspreading events, socioeconomic factors and outbreaks. Results Reproduction numbers showed earlier anticipation compared to active prevalence indicators (14-day cumulative incidence, overall infectivity). In the sensitivity analysis, the impact of different R t estimation methods was moderate/small, and the impact of different serial interval distributions was very small. We couldn’t find conclusive evidence regarding the impact of alleged superspreading events. As a limitation, dataset quality can limit the reliability of the estimates. Conclusions The thorough review of many examples of COVID-19 transmission curves support the usage of R t estimates as a robust transmission indicator.
期刊介绍:
Epidemiologic Methods (EM) seeks contributions comparable to those of the leading epidemiologic journals, but also invites papers that may be more technical or of greater length than what has traditionally been allowed by journals in epidemiology. Applications and examples with real data to illustrate methodology are strongly encouraged but not required. Topics. genetic epidemiology, infectious disease, pharmaco-epidemiology, ecologic studies, environmental exposures, screening, surveillance, social networks, comparative effectiveness, statistical modeling, causal inference, measurement error, study design, meta-analysis