Air Plasma-Nano ZnO Coating Improves the Impact Resistance of Ultra-High Molecular Weight Polyethylene Fiber

IF 2.1 4区 材料科学 Q3 MATERIALS SCIENCE, COMPOSITES Composite Interfaces Pub Date : 2023-05-08 DOI:10.1080/09276440.2023.2209370
Darong Yu, Sanqiu Liu, Yong Xin
{"title":"Air Plasma-Nano ZnO Coating Improves the Impact Resistance of Ultra-High Molecular Weight Polyethylene Fiber","authors":"Darong Yu, Sanqiu Liu, Yong Xin","doi":"10.1080/09276440.2023.2209370","DOIUrl":null,"url":null,"abstract":"ABSTRACT In this study, air plasma and ZnO coating was used to modify ultra-high-molecular-weight polyethylene fibre (UHMWPE). The surface morphologies of the fibre with and without ZnO coating were examined under an electron scanning microscope (SEM), and the surface chemical composition was studied through X-ray spectroscopy. Moreover, the impact resistance and weight loss heat weight (TGA) of the fibre were examined. The results of this study indicated that the chemical activity of the fibre surface was enhanced due to the adsorption of O-C=O group, thus increasing the binding force between nano-ZnO coating and the fibre surface. A compact net-like nano-ZnO coating was identified on the fibre surface. The fibre pre-treated by plasma can be plated with more complete coatings, the thermal stability was enhanced by 19.7% after 120 s of treatment, and the impact resistance was significantly increased by 177% after 90 s of treatment. GRAPHICAL ABSTRACT","PeriodicalId":10653,"journal":{"name":"Composite Interfaces","volume":"7 1","pages":"1247 - 1267"},"PeriodicalIF":2.1000,"publicationDate":"2023-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composite Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/09276440.2023.2209370","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACT In this study, air plasma and ZnO coating was used to modify ultra-high-molecular-weight polyethylene fibre (UHMWPE). The surface morphologies of the fibre with and without ZnO coating were examined under an electron scanning microscope (SEM), and the surface chemical composition was studied through X-ray spectroscopy. Moreover, the impact resistance and weight loss heat weight (TGA) of the fibre were examined. The results of this study indicated that the chemical activity of the fibre surface was enhanced due to the adsorption of O-C=O group, thus increasing the binding force between nano-ZnO coating and the fibre surface. A compact net-like nano-ZnO coating was identified on the fibre surface. The fibre pre-treated by plasma can be plated with more complete coatings, the thermal stability was enhanced by 19.7% after 120 s of treatment, and the impact resistance was significantly increased by 177% after 90 s of treatment. GRAPHICAL ABSTRACT
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
空气等离子体纳米ZnO涂层提高了超高分子量聚乙烯纤维的抗冲击性能
摘要本研究采用空气等离子体和ZnO涂层对超高分子量聚乙烯纤维(UHMWPE)进行改性。用电子扫描显微镜(SEM)观察了涂覆和未涂覆ZnO纤维的表面形貌,并用x射线能谱分析了表面化学成分。测试了纤维的抗冲击性能和热失重(TGA)。本研究结果表明,O- c =O基团的吸附增强了纤维表面的化学活性,从而增加了纳米zno涂层与纤维表面的结合力。在纤维表面发现了致密的网状纳米氧化锌涂层。经等离子体预处理的纤维可获得更完整的涂层,处理120 s后热稳定性提高19.7%,处理90 s后抗冲击性能显著提高177%。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Composite Interfaces
Composite Interfaces 工程技术-材料科学:复合
CiteScore
5.00
自引率
3.80%
发文量
58
审稿时长
3 months
期刊介绍: Composite Interfaces publishes interdisciplinary scientific and engineering research articles on composite interfaces/interphases and their related phenomena. Presenting new concepts for the fundamental understanding of composite interface study, the journal balances interest in chemistry, physical properties, mechanical properties, molecular structures, characterization techniques and theories. Composite Interfaces covers a wide range of topics including - but not restricted to: -surface treatment of reinforcing fibers and fillers- effect of interface structure on mechanical properties, physical properties, curing and rheology- coupling agents- synthesis of matrices designed to promote adhesion- molecular and atomic characterization of interfaces- interfacial morphology- dynamic mechanical study of interphases- interfacial compatibilization- adsorption- tribology- composites with organic, inorganic and metallic materials- composites applied to aerospace, automotive, appliances, electronics, construction, marine, optical and biomedical fields
期刊最新文献
Characterization of composite materials with recycled wind turbine blade additives using atomic force microscopy Does a polymer film due to Rayleigh-instability affect interfacial properties measured by microbond test? Influence of argon plasma treatment on interfacial performance of CFRP at high temperature Hygrothermal effect and statistical analysis of the interfacial performance of nano and microscale polymer composites Current trends and future directions in Si-based MXene composites for enhanced lithium-ion battery applications: a comperehensive review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1