RFA Reinforced Firefly Algorithm to Identify Optimal Feature Subsets for Network IDS

IF 0.6 Q4 COMPUTER SCIENCE, THEORY & METHODS International Journal of Grid and High Performance Computing Pub Date : 2020-07-01 DOI:10.4018/ijghpc.2020070105
Rajakumar Ramalingam, K. Dinesh, A. Dumka, L. Jayakumar
{"title":"RFA Reinforced Firefly Algorithm to Identify Optimal Feature Subsets for Network IDS","authors":"Rajakumar Ramalingam, K. Dinesh, A. Dumka, L. Jayakumar","doi":"10.4018/ijghpc.2020070105","DOIUrl":null,"url":null,"abstract":"Intrusion detection systems (IDS's) play a vital role in network security to prevent the unauthorized use of data over networks. The feature selection approach is an important paradigm to strengthen IDS systems. In this article, a reinforced firefly-based feature selection model is proposed. This model utilizes the firefly inspired optimizer to select the features and it combines filter-based and wrapper-based approaches to boost the optimizer approach of the significant feature subset. In addition to that, novel classifiers are used to validate the efficiency of the selected subset. The proposed work is tested on the KDD Cup99 data sets which include 41 different features. Experimental results convey that the proposed work outperforms in terms of better detection accuracy, FPR and F-score. Also, it achieves better classification accuracy and less computational complexity compared to other algorithms.","PeriodicalId":43565,"journal":{"name":"International Journal of Grid and High Performance Computing","volume":"42 1","pages":"68-87"},"PeriodicalIF":0.6000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Grid and High Performance Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijghpc.2020070105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 1

Abstract

Intrusion detection systems (IDS's) play a vital role in network security to prevent the unauthorized use of data over networks. The feature selection approach is an important paradigm to strengthen IDS systems. In this article, a reinforced firefly-based feature selection model is proposed. This model utilizes the firefly inspired optimizer to select the features and it combines filter-based and wrapper-based approaches to boost the optimizer approach of the significant feature subset. In addition to that, novel classifiers are used to validate the efficiency of the selected subset. The proposed work is tested on the KDD Cup99 data sets which include 41 different features. Experimental results convey that the proposed work outperforms in terms of better detection accuracy, FPR and F-score. Also, it achieves better classification accuracy and less computational complexity compared to other algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于RFA增强的萤火虫算法识别网络入侵检测的最优特征子集
入侵检测系统(IDS)在网络安全中起着至关重要的作用,它可以防止未经授权使用网络上的数据。特征选择方法是加强入侵检测系统的一个重要范例。本文提出了一种基于增强萤火虫的特征选择模型。该模型利用萤火虫启发的优化器来选择特征,并结合基于过滤器和基于包装的方法来增强重要特征子集的优化器方法。除此之外,还使用新的分类器来验证所选子集的效率。在包含41个不同特征的KDD Cup99数据集上对所提出的工作进行了测试。实验结果表明,该方法具有更好的检测精度、FPR和F-score。与其他算法相比,它具有更好的分类精度和更小的计算复杂度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.70
自引率
10.00%
发文量
24
期刊最新文献
A Potent View on the Effects of E-Learning Pre-Cutoff Value Calculation Method for Accelerating Metric Space Outlier Detection A Security Method for Cloud Storage Using Data Classification An Energy-Efficient Multi-Channel Design for Distributed Wireless Sensor Networks On Allocation Algorithms for Manycore Systems With Network on Chip
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1