Did You Say U2 or YouTube?: Inferring Implicit Transcripts from Voice Search Logs

Milad Shokouhi, Umut Ozertem, Nick Craswell
{"title":"Did You Say U2 or YouTube?: Inferring Implicit Transcripts from Voice Search Logs","authors":"Milad Shokouhi, Umut Ozertem, Nick Craswell","doi":"10.1145/2872427.2882994","DOIUrl":null,"url":null,"abstract":"Web search via voice is becoming increasingly popular, taking advantage of recent advances in automatic speech recognition. Speech recognition systems are trained using audio transcripts, which can be generated by a paid annotator listening to some audio and manually transcribing it. This paper considers an alternative source of training data for speech recognition, called implicit transcription. This is based on Web search clicks and reformulations, which can be interpreted as validating or correcting the recognition done during a real Web search. This can give a large amount of free training data that matches the exact characteristics of real incoming voice searches and the implicit transcriptions can better reflect the needs of real users because they come from the user who generated the audio. On an overall basis we demonstrate that the new training data has value in improving speech recognition. We further show that the in-context feedback from real users can allow the speech recognizer to exploit contextual signals, and reduce the recognition error rate further by up to 23%.","PeriodicalId":20455,"journal":{"name":"Proceedings of the 25th International Conference on World Wide Web","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th International Conference on World Wide Web","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2872427.2882994","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

Web search via voice is becoming increasingly popular, taking advantage of recent advances in automatic speech recognition. Speech recognition systems are trained using audio transcripts, which can be generated by a paid annotator listening to some audio and manually transcribing it. This paper considers an alternative source of training data for speech recognition, called implicit transcription. This is based on Web search clicks and reformulations, which can be interpreted as validating or correcting the recognition done during a real Web search. This can give a large amount of free training data that matches the exact characteristics of real incoming voice searches and the implicit transcriptions can better reflect the needs of real users because they come from the user who generated the audio. On an overall basis we demonstrate that the new training data has value in improving speech recognition. We further show that the in-context feedback from real users can allow the speech recognizer to exploit contextual signals, and reduce the recognition error rate further by up to 23%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
你说的是U2还是YouTube?:从语音搜索日志中推断隐含文本
利用自动语音识别技术的最新进展,通过语音进行网络搜索正变得越来越流行。语音识别系统是使用音频记录进行训练的,音频记录可以由付费的注释者听一些音频并手动转录生成。本文考虑了语音识别训练数据的另一种来源,称为隐式转录。这是基于Web搜索点击和重新表述,可以将其解释为验证或纠正在实际Web搜索期间完成的识别。这可以提供大量与真实输入语音搜索的确切特征相匹配的免费训练数据,并且隐含转录由于来自生成音频的用户,因此可以更好地反映真实用户的需求。总的来说,我们证明了新的训练数据在改进语音识别方面具有价值。我们进一步表明,来自真实用户的上下文反馈可以允许语音识别器利用上下文信号,并进一步降低高达23%的识别错误率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MapWatch: Detecting and Monitoring International Border Personalization on Online Maps Automatic Discovery of Attribute Synonyms Using Query Logs and Table Corpora Learning Global Term Weights for Content-based Recommender Systems From Freebase to Wikidata: The Great Migration GoCAD: GPU-Assisted Online Content-Adaptive Display Power Saving for Mobile Devices in Internet Streaming
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1