Current Status of Gold Leaching Technologies from Low Grade Ores or Tailings

Sang-hun Lee
{"title":"Current Status of Gold Leaching Technologies from Low Grade Ores or Tailings","authors":"Sang-hun Lee","doi":"10.7844/KIRR.2020.29.2.3","DOIUrl":null,"url":null,"abstract":"Recently, the gold leaching technologies draw much interest to recover gold from low grade ores. Current leaching processes mostly use cyanide as the leaching agent, due to its high leaching efficiencies and cost-effectiveness. However, use of cyanide is severely problematic, because of toxicity and thereby environmental risks, and requires strict regulations and environmental management. Especially, this issue becomes further apparent when cyanide should be applied for dump or heap leaching for low cost gold recovery along with recent trends. To resolve this issue, the alternative leaching processes using thiosulfate or halogen compounds, instead of cyanide, have been studied and developed but there have been lots of difficulties toward commercialization, and therefore further research should be conducted. The commercialization of dump or heap bioleaching technologies should be urgently required for effective direct biogenic gold recovery from low grade ores or tailings without use of cyanide.","PeriodicalId":17385,"journal":{"name":"Journal of the Korean Institute of Resources Recycling","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korean Institute of Resources Recycling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7844/KIRR.2020.29.2.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Recently, the gold leaching technologies draw much interest to recover gold from low grade ores. Current leaching processes mostly use cyanide as the leaching agent, due to its high leaching efficiencies and cost-effectiveness. However, use of cyanide is severely problematic, because of toxicity and thereby environmental risks, and requires strict regulations and environmental management. Especially, this issue becomes further apparent when cyanide should be applied for dump or heap leaching for low cost gold recovery along with recent trends. To resolve this issue, the alternative leaching processes using thiosulfate or halogen compounds, instead of cyanide, have been studied and developed but there have been lots of difficulties toward commercialization, and therefore further research should be conducted. The commercialization of dump or heap bioleaching technologies should be urgently required for effective direct biogenic gold recovery from low grade ores or tailings without use of cyanide.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
低品位矿石或尾矿浸金技术现状
近年来,从低品位矿石中回收金的浸金技术引起了人们的广泛关注。由于氰化物浸出效率高、成本效益好,目前的浸出工艺多采用氰化物作为浸出剂。然而,氰化物的使用是一个严重的问题,因为它有毒性,因而有环境风险,需要严格的条例和环境管理。特别是在采用氰化物进行倾倒或堆浸以低成本回收金的情况下,随着近年来的发展趋势,这一问题变得更加明显。为了解决这一问题,人们已经研究和开发了硫代硫酸盐或卤素化合物替代氰化物的浸出工艺,但在商业化方面存在许多困难,因此需要进一步研究。为了在不使用氰化物的情况下,从低品位矿石或尾矿中有效地直接生物回收金,迫切需要将倾倒或堆生物浸出技术商业化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Measurement of Bubble Size in Flotation Column using Image Analysis System Enrichment of Rare Earth Elements Contained in Coal Ashes from Korea Circulating Fluidized Bed Combustion (CFBC) Phase Transformation of Coal Tailing of Beneficiation with the Addition of Na2CO3 at High Temperature The Study on the Removal Process of Heavy Metals from Mine Drainage Using Coal Bottom Ash Burnability and Mineral Properties of Clinker Added Chlorine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1