Feedback-AVPGAN: Feedback-guided generative adversarial network for generating antiviral peptides.

IF 0.9 4区 生物学 Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY Journal of Bioinformatics and Computational Biology Pub Date : 2022-12-01 DOI:10.1142/S0219720022500263
Kano Hasegawa, Yoshitaka Moriwaki, Tohru Terada, Cao Wei, Kentaro Shimizu
{"title":"Feedback-AVPGAN: Feedback-guided generative adversarial network for generating antiviral peptides.","authors":"Kano Hasegawa,&nbsp;Yoshitaka Moriwaki,&nbsp;Tohru Terada,&nbsp;Cao Wei,&nbsp;Kentaro Shimizu","doi":"10.1142/S0219720022500263","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, we propose <i>Feedback-AVPGAN</i>, a system that aims to computationally generate novel antiviral peptides (AVPs). This system relies on the key premise of the Generative Adversarial Network (GAN) model and the Feedback method. GAN, a generative modeling approach that uses deep learning methods, comprises a generator and a discriminator. The generator is used to generate peptides; the generated proteins are fed to the discriminator to distinguish between the AVPs and non-AVPs. The original GAN design uses actual data to train the discriminator. However, not many AVPs have been experimentally obtained. To solve this problem, we used the Feedback method to allow the discriminator to learn from the existing as well as generated synthetic data. We implemented this method using a classifier module that classifies each peptide sequence generated by the GAN generator as AVP or non-AVP. The classifier uses the transformer network and achieves high classification accuracy. This mechanism enables the efficient generation of peptides with a high probability of exhibiting antiviral activity. Using the Feedback method, we evaluated various algorithms and their performance. Moreover, we modeled the structure of the generated peptides using AlphaFold2 and determined the peptides having similar physicochemical properties and structures to those of known AVPs, although with different sequences.</p>","PeriodicalId":48910,"journal":{"name":"Journal of Bioinformatics and Computational Biology","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bioinformatics and Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1142/S0219720022500263","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

In this study, we propose Feedback-AVPGAN, a system that aims to computationally generate novel antiviral peptides (AVPs). This system relies on the key premise of the Generative Adversarial Network (GAN) model and the Feedback method. GAN, a generative modeling approach that uses deep learning methods, comprises a generator and a discriminator. The generator is used to generate peptides; the generated proteins are fed to the discriminator to distinguish between the AVPs and non-AVPs. The original GAN design uses actual data to train the discriminator. However, not many AVPs have been experimentally obtained. To solve this problem, we used the Feedback method to allow the discriminator to learn from the existing as well as generated synthetic data. We implemented this method using a classifier module that classifies each peptide sequence generated by the GAN generator as AVP or non-AVP. The classifier uses the transformer network and achieves high classification accuracy. This mechanism enables the efficient generation of peptides with a high probability of exhibiting antiviral activity. Using the Feedback method, we evaluated various algorithms and their performance. Moreover, we modeled the structure of the generated peptides using AlphaFold2 and determined the peptides having similar physicochemical properties and structures to those of known AVPs, although with different sequences.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
反馈- avpgan:用于生成抗病毒肽的反馈引导生成对抗网络。
在这项研究中,我们提出了反馈- avpgan,一个旨在通过计算产生新型抗病毒肽(avp)的系统。该系统以生成对抗网络(GAN)模型和反馈方法为关键前提。GAN是一种使用深度学习方法的生成建模方法,由生成器和鉴别器组成。该发生器用于生成多肽;生成的蛋白质被送入鉴别器以区分avp和非avp。原始GAN设计使用实际数据来训练鉴别器。然而,实验中获得的avp并不多。为了解决这个问题,我们使用了Feedback方法让鉴别器从现有的和生成的合成数据中学习。我们使用分类器模块实现该方法,该模块将GAN生成器生成的每个肽序列分类为AVP或非AVP。该分类器采用变压器网络,分类精度高。这种机制使高效产生具有高概率抗病毒活性的肽。使用反馈方法,我们评估了各种算法及其性能。此外,我们使用AlphaFold2模拟了生成的肽的结构,并确定了与已知avp具有相似的物理化学性质和结构的肽,尽管序列不同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Bioinformatics and Computational Biology
Journal of Bioinformatics and Computational Biology MATHEMATICAL & COMPUTATIONAL BIOLOGY-
CiteScore
2.10
自引率
0.00%
发文量
57
期刊介绍: The Journal of Bioinformatics and Computational Biology aims to publish high quality, original research articles, expository tutorial papers and review papers as well as short, critical comments on technical issues associated with the analysis of cellular information. The research papers will be technical presentations of new assertions, discoveries and tools, intended for a narrower specialist community. The tutorials, reviews and critical commentary will be targeted at a broader readership of biologists who are interested in using computers but are not knowledgeable about scientific computing, and equally, computer scientists who have an interest in biology but are not familiar with current thrusts nor the language of biology. Such carefully chosen tutorials and articles should greatly accelerate the rate of entry of these new creative scientists into the field.
期刊最新文献
Construction of a multi-tissue compound-target interaction network of Qingfei Paidu decoction in COVID-19 treatment based on deep learning and transcriptomic analysis. PCA-constrained multi-core matrix fusion network: A novel approach for cancer subtype identification. Gtie-Rt: A comprehensive graph learning model for predicting drugs targeting metabolic pathways in human. NDMNN: A novel deep residual network based MNN method to remove batch effects from scRNA-seq data. Construction of transcript regulation mechanism prediction models based on binding motif environment of transcription factor AoXlnR in Aspergillus oryzae.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1