Indoor localization by denoising autoencoders and semi-supervised learning in 3D simulated environment

Amirhosein Shantia, Rik Timmers, Lambert Schomaker, M. Wiering
{"title":"Indoor localization by denoising autoencoders and semi-supervised learning in 3D simulated environment","authors":"Amirhosein Shantia, Rik Timmers, Lambert Schomaker, M. Wiering","doi":"10.1109/IJCNN.2015.7280715","DOIUrl":null,"url":null,"abstract":"Robotic mapping and localization methods are mostly dominated by using a combination of spatial alignment of sensory inputs, loop closure detection, and a global fine-tuning step. This requires either expensive depth sensing systems, or fast computational hardware at run-time to produce a 2D or 3D map of the environment. In a similar context, deep neural networks are used extensively in scene recognition applications, but are not yet applied to localization and mapping problems. In this paper, we adopt a novel approach by using denoising autoencoders and image information for tackling robot localization problems. We use semi-supervised learning with location values that are provided by traditional mapping methods. After training, our method requires much less run-time computations, and therefore can perform real-time localization on normal processing units. We compare the effects of different feature vectors such as plain images, the scale invariant feature transform and histograms of oriented gradients on the localization precision. The best system can localize with an average positional error of ten centimeters and an angular error of four degrees in 3D simulation.","PeriodicalId":6539,"journal":{"name":"2015 International Joint Conference on Neural Networks (IJCNN)","volume":"76 1","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Joint Conference on Neural Networks (IJCNN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2015.7280715","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40

Abstract

Robotic mapping and localization methods are mostly dominated by using a combination of spatial alignment of sensory inputs, loop closure detection, and a global fine-tuning step. This requires either expensive depth sensing systems, or fast computational hardware at run-time to produce a 2D or 3D map of the environment. In a similar context, deep neural networks are used extensively in scene recognition applications, but are not yet applied to localization and mapping problems. In this paper, we adopt a novel approach by using denoising autoencoders and image information for tackling robot localization problems. We use semi-supervised learning with location values that are provided by traditional mapping methods. After training, our method requires much less run-time computations, and therefore can perform real-time localization on normal processing units. We compare the effects of different feature vectors such as plain images, the scale invariant feature transform and histograms of oriented gradients on the localization precision. The best system can localize with an average positional error of ten centimeters and an angular error of four degrees in 3D simulation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于去噪自编码器和半监督学习的三维模拟环境室内定位
机器人测绘和定位方法主要是利用感官输入的空间对齐、闭环检测和全局微调步骤的组合。这要么需要昂贵的深度传感系统,要么需要运行时的快速计算硬件来生成环境的2D或3D地图。在类似的背景下,深度神经网络广泛应用于场景识别应用,但尚未应用于定位和映射问题。在本文中,我们采用了一种新的方法,即使用去噪的自编码器和图像信息来解决机器人定位问题。我们使用传统映射方法提供的位置值的半监督学习。经过训练,我们的方法需要更少的运行时计算,因此可以在正常的处理单元上进行实时定位。比较了平面图像、尺度不变特征变换和方向梯度直方图等不同特征向量对定位精度的影响。在三维仿真中,最佳定位系统的平均定位误差为10厘米,角误差为4度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Efficient conformal regressors using bagged neural nets Repeated play of the SVM game as a means of adaptive classification Unit commitment considering multiple charging and discharging scenarios of plug-in electric vehicles High-dimensional function approximation using local linear embedding A label compression coding approach through maximizing dependence between features and labels for multi-label classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1