AGC tuning of interconnected reheat thermal systems with particle swarm optimization

Q4 Arts and Humanities Czas Kultury Pub Date : 2003-12-14 DOI:10.1109/ICECS.2003.1302055
Y. Abdel-Magid, M. Abido
{"title":"AGC tuning of interconnected reheat thermal systems with particle swarm optimization","authors":"Y. Abdel-Magid, M. Abido","doi":"10.1109/ICECS.2003.1302055","DOIUrl":null,"url":null,"abstract":"This paper demonstrates the use of particle swarm optimization for optimizing the parameters of automatic generation control systems (AGC). An integral controller and a proportional-plus-integral controller are considered. A two-area reheat thermal system is considered to exemplify the optimum parameter search. The optimal AGC parameters search is formulated as an optimization problem with a standard infinite time quadratic objective function. A time domain simulation of the system is then used in conjunction with the particle swarm optimizer to determine the controller gains. The integral square of the error and the integral of time-multiplied absolute value of the error performances indices are considered. The results reported in this paper demonstrate the effectiveness of the particle swarm optimizer in the tuning of the AGC parameters. The enhancement in the dynamic response of the power system is verified through simulation results.","PeriodicalId":36912,"journal":{"name":"Czas Kultury","volume":"64 1","pages":"376-379 Vol.1"},"PeriodicalIF":0.0000,"publicationDate":"2003-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"107","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Czas Kultury","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECS.2003.1302055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 107

Abstract

This paper demonstrates the use of particle swarm optimization for optimizing the parameters of automatic generation control systems (AGC). An integral controller and a proportional-plus-integral controller are considered. A two-area reheat thermal system is considered to exemplify the optimum parameter search. The optimal AGC parameters search is formulated as an optimization problem with a standard infinite time quadratic objective function. A time domain simulation of the system is then used in conjunction with the particle swarm optimizer to determine the controller gains. The integral square of the error and the integral of time-multiplied absolute value of the error performances indices are considered. The results reported in this paper demonstrate the effectiveness of the particle swarm optimizer in the tuning of the AGC parameters. The enhancement in the dynamic response of the power system is verified through simulation results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于粒子群优化的互联再热系统AGC调谐
本文介绍了用粒子群算法对自动发电控制系统(AGC)进行参数优化的方法。考虑了积分控制器和比例加积分控制器。以两区再热系统为例,进行了最优参数搜索。最优AGC参数的搜索是一个具有标准无限时间二次目标函数的优化问题。然后将系统的时域仿真与粒子群优化器结合使用以确定控制器增益。考虑了误差的平方积分和误差性能指标的绝对值乘时积分。实验结果证明了粒子群优化器在AGC参数整定中的有效性。仿真结果验证了该方法对电力系统动态响应的增强作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Czas Kultury
Czas Kultury Social Sciences-Social Sciences (miscellaneous)
CiteScore
0.10
自引率
0.00%
发文量
10
期刊最新文献
Aktywizm dający przyjemność: działanie na zasadzie wspólnej zgody, lokalne zakorzenienie i oddolne polityki integracyjne Ekopareneza. Rozpoznania wstępne Paradoks Kasztanki. Fantazmatyczne eksponaty w domach-muzeach Luzowanie ontologii. O wytwarzaniu więcej-niż-ludzkich lokalności na Górnym Śląsku Przez negantropologię do obywatelskiej rewolucji w lokalnościach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1