A Review on Thermal Evaporation Method to Synthesis Zinc Oxide as Photocatalytic Material

IF 0.4 Q4 NANOSCIENCE & NANOTECHNOLOGY Nano Hybrids and Composites Pub Date : 2021-02-16 DOI:10.4028/www.scientific.net/NHC.31.55
Najiha Hamid, Syahida Suhaimi, M. Z. Othman, W. Ismail
{"title":"A Review on Thermal Evaporation Method to Synthesis Zinc Oxide as Photocatalytic Material","authors":"Najiha Hamid, Syahida Suhaimi, M. Z. Othman, W. Ismail","doi":"10.4028/www.scientific.net/NHC.31.55","DOIUrl":null,"url":null,"abstract":"Zinc oxide (ZnO) is a metal oxide material that is interested in research due to its possibility of bandgap tailoring, doping with various types of materials as well as being able to form many structures from zero-dimensional to three-dimensional structures. All these properties allow ZnO to be used in broad applications. Several research studies have been reported on the synthesis of ZnO nanostructures by the physical vapour deposition (PVD) technique. One of the potential PVD technique is thermal evaporation process. Generally, the technique is used to grow thin-film but researchers have found a potential to be used in the growth of nanostructures due to the ability to provide high crystallinity with homogeneous and uniform nanostructures. This analysis will therefore explore more about the thermal evaporation synthesized ZnO nanostructures and the application as photocatalyst material in wastewater treatment.","PeriodicalId":18861,"journal":{"name":"Nano Hybrids and Composites","volume":"49 1","pages":"55 - 63"},"PeriodicalIF":0.4000,"publicationDate":"2021-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Hybrids and Composites","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/www.scientific.net/NHC.31.55","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 4

Abstract

Zinc oxide (ZnO) is a metal oxide material that is interested in research due to its possibility of bandgap tailoring, doping with various types of materials as well as being able to form many structures from zero-dimensional to three-dimensional structures. All these properties allow ZnO to be used in broad applications. Several research studies have been reported on the synthesis of ZnO nanostructures by the physical vapour deposition (PVD) technique. One of the potential PVD technique is thermal evaporation process. Generally, the technique is used to grow thin-film but researchers have found a potential to be used in the growth of nanostructures due to the ability to provide high crystallinity with homogeneous and uniform nanostructures. This analysis will therefore explore more about the thermal evaporation synthesized ZnO nanostructures and the application as photocatalyst material in wastewater treatment.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
热蒸发法合成氧化锌光催化材料的研究进展
氧化锌(Zinc oxide, ZnO)是一种备受关注的金属氧化物材料,因为它具有裁剪带隙的可能性,可以掺杂各种类型的材料,并且能够形成从零维到三维结构的许多结构。所有这些特性使得ZnO具有广泛的应用。利用物理气相沉积(PVD)技术合成ZnO纳米结构的研究已经有了一些报道。热蒸发法是极具潜力的PVD技术之一。一般来说,该技术用于生长薄膜,但由于能够提供高结晶度和均匀的纳米结构,研究人员已经发现了用于纳米结构生长的潜力。因此,本文将进一步探讨热蒸发合成ZnO纳米结构及其作为光催化剂材料在废水处理中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nano Hybrids and Composites
Nano Hybrids and Composites NANOSCIENCE & NANOTECHNOLOGY-
自引率
0.00%
发文量
47
期刊最新文献
Optimization of the Printing Parameters of Glass Fiber Reinforced PA6 Using Factorial Experiments Eco-Friendly of Sound-Absorbing Material Based on Polyurethane-Urea with Natural Fiber Waste Numerical and Experimental Study for Al4043A Aluminium-Silicium Alloy Fabricated by Wire Arc Additive Manufacturing under Dynamic Tests Aspects Regarding of Nanomaterials and Nanocomposites in 3D Printing Technology Process Development for Application in Biomedicine Compressive Behavior of Various BCC Lattice Structure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1