Texture image classification with Riemannian fisher vectors

Ioana Ilea, L. Bombrun, C. Germain, R. Terebeș, M. Borda, Y. Berthoumieu
{"title":"Texture image classification with Riemannian fisher vectors","authors":"Ioana Ilea, L. Bombrun, C. Germain, R. Terebeș, M. Borda, Y. Berthoumieu","doi":"10.1109/ICIP.2016.7533019","DOIUrl":null,"url":null,"abstract":"This paper introduces a generalization of the Fisher vectors to the Riemannian manifold. The proposed descriptors, called Riemannian Fisher vectors, are defined first, based on the mixture model of Riemannian Gaussian distributions. Next, their expressions are derived and they are applied in the context of texture image classification. The results are compared to those given by the recently proposed algorithms, bag of Riemannian words and R-VLAD. In addition, the most discriminant Riemannian Fisher vectors are identified.","PeriodicalId":6521,"journal":{"name":"2016 IEEE International Conference on Image Processing (ICIP)","volume":"16 1","pages":"3543-3547"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2016.7533019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

This paper introduces a generalization of the Fisher vectors to the Riemannian manifold. The proposed descriptors, called Riemannian Fisher vectors, are defined first, based on the mixture model of Riemannian Gaussian distributions. Next, their expressions are derived and they are applied in the context of texture image classification. The results are compared to those given by the recently proposed algorithms, bag of Riemannian words and R-VLAD. In addition, the most discriminant Riemannian Fisher vectors are identified.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
黎曼fisher向量纹理图像分类
本文介绍了费雪向量在黎曼流形中的推广。提出的描述符,称为黎曼费雪向量,首先定义,基于黎曼高斯分布的混合模型。其次,推导了它们的表达式,并将其应用于纹理图像分类。将结果与最近提出的算法、黎曼词包算法和R-VLAD算法进行了比较。此外,还确定了最具判别性的黎曼费雪向量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Content-adaptive pyramid representation for 3D object classification Automating the measurement of physiological parameters: A case study in the image analysis of cilia motion Horizon based orientation estimation for planetary surface navigation Softcast with per-carrier power-constrained channels Speeding-up a convolutional neural network by connecting an SVM network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1