Robust penalized empirical likelihood estimation method for linear regression

IF 1.2 4区 数学 Q2 STATISTICS & PROBABILITY Statistics Pub Date : 2023-02-19 DOI:10.1080/02331888.2023.2179054
O. Arslan, Ş. Özdemir
{"title":"Robust penalized empirical likelihood estimation method for linear regression","authors":"O. Arslan, Ş. Özdemir","doi":"10.1080/02331888.2023.2179054","DOIUrl":null,"url":null,"abstract":"Maximum likelihood estimation is a popular method for parameter estimation in regression models. However, since in some data sets it may not be possible to make any distributional assumptions on the error term, the likelihood method cannot be used to estimate the parameters of interest. For those data sets, one can use the empirical likelihood estimation method to estimate the parameters of a linear regression model. The aim of this study is to propose a robust penalized empirical likelihood estimation method to estimate the regression parameters and select significant variables, simultaneously, for data scenarios for which a well-defined likelihood function may not be available. This will be achieved by combining a robust empirical estimation method and the bridge penalty function. We investigate the asymptotic properties of the proposed estimator and explore the finite sample behaviour with a simulation study and a real data example.","PeriodicalId":54358,"journal":{"name":"Statistics","volume":"53 1","pages":"423 - 443"},"PeriodicalIF":1.2000,"publicationDate":"2023-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/02331888.2023.2179054","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

Maximum likelihood estimation is a popular method for parameter estimation in regression models. However, since in some data sets it may not be possible to make any distributional assumptions on the error term, the likelihood method cannot be used to estimate the parameters of interest. For those data sets, one can use the empirical likelihood estimation method to estimate the parameters of a linear regression model. The aim of this study is to propose a robust penalized empirical likelihood estimation method to estimate the regression parameters and select significant variables, simultaneously, for data scenarios for which a well-defined likelihood function may not be available. This will be achieved by combining a robust empirical estimation method and the bridge penalty function. We investigate the asymptotic properties of the proposed estimator and explore the finite sample behaviour with a simulation study and a real data example.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
线性回归的鲁棒惩罚经验似然估计方法
极大似然估计是回归模型中常用的参数估计方法。然而,由于在某些数据集中可能无法对误差项进行任何分布假设,因此似然方法不能用于估计感兴趣的参数。对于这些数据集,可以使用经验似然估计方法来估计线性回归模型的参数。本研究的目的是提出一种稳健的惩罚经验似然估计方法,以估计回归参数并选择显著变量,同时,对于数据场景,定义良好的似然函数可能不可用。这将通过结合鲁棒经验估计方法和桥罚函数来实现。我们研究了所提出的估计量的渐近性质,并通过模拟研究和实际数据示例探讨了有限样本行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Statistics
Statistics 数学-统计学与概率论
CiteScore
1.00
自引率
0.00%
发文量
59
审稿时长
12 months
期刊介绍: Statistics publishes papers developing and analysing new methods for any active field of statistics, motivated by real-life problems. Papers submitted for consideration should provide interesting and novel contributions to statistical theory and its applications with rigorous mathematical results and proofs. Moreover, numerical simulations and application to real data sets can improve the quality of papers, and should be included where appropriate. Statistics does not publish papers which represent mere application of existing procedures to case studies, and papers are required to contain methodological or theoretical innovation. Topics of interest include, for example, nonparametric statistics, time series, analysis of topological or functional data. Furthermore the journal also welcomes submissions in the field of theoretical econometrics and its links to mathematical statistics.
期刊最新文献
Robust estimator of the ruin probability in infinite time for heavy-tailed distributions Gaussian modeling with B-splines for spatial functional data on irregular domains A note on the asymptotic behavior of a mildly unstable integer-valued AR(1) model Explainable machine learning for financial risk management: two practical use cases Online updating Huber robust regression for big data streams
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1