Association Plots: visualizing cluster-specific associations in high-dimensional correspondence analysis biplots

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2023-06-08 DOI:10.1093/jrsssc/qlad039
E. Gralinska, Martin Vingron
{"title":"Association Plots: visualizing cluster-specific associations in high-dimensional correspondence analysis biplots","authors":"E. Gralinska, Martin Vingron","doi":"10.1093/jrsssc/qlad039","DOIUrl":null,"url":null,"abstract":"\n In molecular biology, just as in many other fields of science, data often come in the form of matrices or contingency tables with many observations (rows) for a set of variables (columns). While projection methods like principal component analysis or correspondence analysis (CA) can be applied for obtaining an overview of such data, in cases where the matrix is very large the associated loss of information upon projection into two or three dimensions may be dramatic. However, when the set of variables can be grouped into clusters, this opens up a new angle on the data. We focus on the question of which observations are associated to a cluster and distinguish it from other clusters. CA employs a geometry geared towards answering this question. We exploit this feature in order to introduce Association Plots for visualizing cluster-specific observations in complex data. Regardless of the data matrix dimensionality Association Plots are two-dimensional and depict the observations associated to a cluster of variables. We demonstrate our method on two small data sets and then use it to study a challenging genomic data set comprising >10,000 samples. We show that Association Plots can clearly highlight those observations which characterise a cluster of variables.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/jrsssc/qlad039","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

Abstract

In molecular biology, just as in many other fields of science, data often come in the form of matrices or contingency tables with many observations (rows) for a set of variables (columns). While projection methods like principal component analysis or correspondence analysis (CA) can be applied for obtaining an overview of such data, in cases where the matrix is very large the associated loss of information upon projection into two or three dimensions may be dramatic. However, when the set of variables can be grouped into clusters, this opens up a new angle on the data. We focus on the question of which observations are associated to a cluster and distinguish it from other clusters. CA employs a geometry geared towards answering this question. We exploit this feature in order to introduce Association Plots for visualizing cluster-specific observations in complex data. Regardless of the data matrix dimensionality Association Plots are two-dimensional and depict the observations associated to a cluster of variables. We demonstrate our method on two small data sets and then use it to study a challenging genomic data set comprising >10,000 samples. We show that Association Plots can clearly highlight those observations which characterise a cluster of variables.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
关联图:在高维对应分析双图中可视化特定集群的关联
在分子生物学中,就像在许多其他科学领域一样,数据通常以矩阵或列联表的形式出现,其中包含一组变量(列)的许多观察结果(行)。虽然主成分分析或对应分析(CA)等投影方法可以用于获得此类数据的概览,但在矩阵非常大的情况下,将相关信息投影到二维或三维时可能会造成巨大的损失。然而,当这组变量可以分组到集群中时,这就为数据打开了一个新的角度。我们关注的问题是哪些观测值与一个集群相关联,并将其与其他集群区分开来。CA采用了一种几何学来回答这个问题。我们利用这一特征来引入关联图,以在复杂数据中可视化特定于集群的观察结果。无论数据矩阵维度如何,关联图都是二维的,描述了与一组变量相关的观测结果。我们在两个小数据集上演示了我们的方法,然后使用它来研究包含>10,000个样本的具有挑战性的基因组数据集。我们表明,关联图可以清楚地突出那些表征一组变量的观察结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1