Simultaneous expression of an endogenous spermidine synthase and a butanol dehydrogenase from Thermoanaerobacter pseudethanolicus in Clostridium thermocellum results in increased resistance to acetic acid and furans, increased ethanol production and an increase in thermotolerance.

Sun-Ki Kim, Yannick J Bomble, Janet Westpheling
{"title":"Simultaneous expression of an endogenous spermidine synthase and a butanol dehydrogenase from Thermoanaerobacter pseudethanolicus in Clostridium thermocellum results in increased resistance to acetic acid and furans, increased ethanol production and an increase in thermotolerance.","authors":"Sun-Ki Kim,&nbsp;Yannick J Bomble,&nbsp;Janet Westpheling","doi":"10.1186/s13068-023-02291-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Sensitivity to inhibitors derived from the pretreatment of plant biomass is a barrier to the consolidated bioprocessing of these complex substrates to fuels and chemicals by microbes. Spermidine is a low molecular weight aliphatic nitrogen compound ubiquitous in microorganisms, plants, and animals and is often associated with tolerance to stress. We recently showed that overexpression of the endogenous spermidine synthase enhanced tolerance of the Gram-positive bacterium, Clostridium thermocellum to the furan derivatives furfural and HMF.</p><p><strong>Results: </strong>Here we show that co-expression with an NADPH-dependent heat-stable butanol dehydrogenase from Thermoanaerobacter pseudethanolicus further enhanced tolerance to furans and acetic acid and most strikingly resulted in an increase in thermotolerance at 65 °C.</p><p><strong>Conclusions: </strong>Tolerance to fermentation inhibitors will facilitate the use of plant biomass substrates by thermophiles in general and this organism in particular. The ability to grow C. thermocellum at 65 °C has profound implications for metabolic engineering.</p>","PeriodicalId":9125,"journal":{"name":"Biotechnology for Biofuels and Bioproducts","volume":"16 1","pages":"46"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10012442/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology for Biofuels and Bioproducts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13068-023-02291-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Background: Sensitivity to inhibitors derived from the pretreatment of plant biomass is a barrier to the consolidated bioprocessing of these complex substrates to fuels and chemicals by microbes. Spermidine is a low molecular weight aliphatic nitrogen compound ubiquitous in microorganisms, plants, and animals and is often associated with tolerance to stress. We recently showed that overexpression of the endogenous spermidine synthase enhanced tolerance of the Gram-positive bacterium, Clostridium thermocellum to the furan derivatives furfural and HMF.

Results: Here we show that co-expression with an NADPH-dependent heat-stable butanol dehydrogenase from Thermoanaerobacter pseudethanolicus further enhanced tolerance to furans and acetic acid and most strikingly resulted in an increase in thermotolerance at 65 °C.

Conclusions: Tolerance to fermentation inhibitors will facilitate the use of plant biomass substrates by thermophiles in general and this organism in particular. The ability to grow C. thermocellum at 65 °C has profound implications for metabolic engineering.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在热细胞梭菌中同时表达一种内源性亚精胺合成酶和一种丁醇脱氢酶,可以增强对醋酸和呋喃的抗性,增加乙醇产量,提高耐热性。
背景:对来自植物生物质预处理的抑制剂的敏感性是微生物将这些复杂底物固化为燃料和化学品的生物处理的障碍。亚精胺是一种低分子量的脂肪氮化合物,普遍存在于微生物、植物和动物中,通常与抗逆性有关。我们最近发现,内源性亚精胺合成酶的过表达增强了革兰氏阳性细菌热细胞梭菌对呋喃衍生物糠醛和HMF的耐受性。结果:在这里,我们发现与来自热厌氧菌伪乙醇菌的nadph依赖性热稳定丁醇脱氢酶共表达进一步增强了对呋喃和乙酸的耐受性,最显著的是在65°C时增加了耐热性。结论:对发酵抑制剂的耐受性将促进嗜热菌对植物生物量底物的利用,特别是这种生物。在65℃条件下培养C. thermocellum的能力对代谢工程具有深远的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Alanine dehydrogenases from four different microorganisms: characterization and their application in L-alanine production. A high-throughput dual system to screen polyphosphate kinase mutants for efficient ATP regeneration in L-theanine biocatalysis. Unravelling and engineering an operon involved in the side-chain degradation of sterols in Mycolicibacterium neoaurum for the production of steroid synthons. Correction: Secretion of collagenases by Saccharomyces cerevisiae for collagen degradation. Engineering Saccharomyces cerevisiae for improved biofilm formation and ethanol production in continuous fermentation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1