Effect of soil consolidation on the fractality of the filtration law

G. Panahov, P. Museibli, Babek N. Sultanov
{"title":"Effect of soil consolidation on the fractality of the filtration law","authors":"G. Panahov, P. Museibli, Babek N. Sultanov","doi":"10.59441/ijame-2023-0008","DOIUrl":null,"url":null,"abstract":"In this paper, the effect of consolidation of the soil structure on the fractality of the fluid flow was evaluated. The equation of fractal law of flow in the porous medium under consolidation of two-phase, fully fluid-saturated soil was determined. Given all the simplifications, as well as the undoubted importance of the nature of the porous medium, which primarily determine the possible processes of both consolidation and fractal flow based on the results of the studies, we can conclude that a homogeneous porous reservoir at given parameters under the effect of groundwater pressure will expand its fractal structure.","PeriodicalId":37871,"journal":{"name":"International Journal of Applied Mechanics and Engineering","volume":"74 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Mechanics and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59441/ijame-2023-0008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, the effect of consolidation of the soil structure on the fractality of the fluid flow was evaluated. The equation of fractal law of flow in the porous medium under consolidation of two-phase, fully fluid-saturated soil was determined. Given all the simplifications, as well as the undoubted importance of the nature of the porous medium, which primarily determine the possible processes of both consolidation and fractal flow based on the results of the studies, we can conclude that a homogeneous porous reservoir at given parameters under the effect of groundwater pressure will expand its fractal structure.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
土壤固结对过滤规律分形的影响
本文评价了土体结构固结对流体流动分形的影响。建立了两相全流体饱和土固结下多孔介质的分形流动规律方程。考虑到所有这些简化,以及多孔介质性质的重要性,这些性质主要决定了研究结果中固结和分形流动的可能过程,我们可以得出结论,在给定参数下,地下水压力作用下均质多孔储层将扩展其分形结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Applied Mechanics and Engineering
International Journal of Applied Mechanics and Engineering Engineering-Civil and Structural Engineering
CiteScore
1.50
自引率
0.00%
发文量
45
审稿时长
35 weeks
期刊介绍: INTERNATIONAL JOURNAL OF APPLIED MECHANICS AND ENGINEERING is an archival journal which aims to publish high quality original papers. These should encompass the best fundamental and applied science with an emphasis on their application to the highest engineering practice. The scope includes all aspects of science and engineering which have relevance to: biomechanics, elasticity, plasticity, vibrations, mechanics of structures, mechatronics, plates & shells, magnetohydrodynamics, rheology, thermodynamics, tribology, fluid dynamics.
期刊最新文献
The detrimental effect of thermal exposure and thermophoresis on MHD flow with combined mass and heat transmission employing permeability Conjugate Mixed Convection of a Micropolar Fluid Over a Vertical Hollow Circular Cylinder chattering analysis of an electro-hydraulic backstepping velocity controller Effect of Angular Speed Variations on the Nonlinear Vibrations of a Rotational Spring-Mass System Entropy Generation Analysis OF Mhd Micropolar – Nanofluid Flow Over A Moved And Permeable Vertical Plate
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1