{"title":"On nomalized differentials on spectral curves associated with the sinh-Gordon equation","authors":"T. Kappeler, Yannick Widmer","doi":"10.3934/jgm.2020023","DOIUrl":null,"url":null,"abstract":"The spectral curve associated with the sinh-Gordon equation on the torus is defined in terms of the spectrum of the Lax operator appearing in the Lax pair formulation of the equation. If the spectrum is simple, it is an open Riemann surface of infinite genus. In this paper we construct normalized differentials on this curve and derive estimates for the location of their zeroes, needed for the construction of angle variables.","PeriodicalId":49161,"journal":{"name":"Journal of Geometric Mechanics","volume":"22 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometric Mechanics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/jgm.2020023","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1
Abstract
The spectral curve associated with the sinh-Gordon equation on the torus is defined in terms of the spectrum of the Lax operator appearing in the Lax pair formulation of the equation. If the spectrum is simple, it is an open Riemann surface of infinite genus. In this paper we construct normalized differentials on this curve and derive estimates for the location of their zeroes, needed for the construction of angle variables.
期刊介绍:
The Journal of Geometric Mechanics (JGM) aims to publish research articles devoted to geometric methods (in a broad sense) in mechanics and control theory, and intends to facilitate interaction between theory and applications. Advances in the following topics are welcomed by the journal:
1. Lagrangian and Hamiltonian mechanics
2. Symplectic and Poisson geometry and their applications to mechanics
3. Geometric and optimal control theory
4. Geometric and variational integration
5. Geometry of stochastic systems
6. Geometric methods in dynamical systems
7. Continuum mechanics
8. Classical field theory
9. Fluid mechanics
10. Infinite-dimensional dynamical systems
11. Quantum mechanics and quantum information theory
12. Applications in physics, technology, engineering and the biological sciences.