{"title":"Building Castles on the Ground: Conversations Between Ecologists and Engineers","authors":"Renee M. Borges, Tejas G. Murthy","doi":"10.1007/s41745-023-00372-x","DOIUrl":null,"url":null,"abstract":"<div><p>The architectural feats of termites and their farming capabilities have been admired by biologists, engineers and architects and have inspired writers including early natural historians. South India is endowed with termite mud castles; their seeming impregnability threw up intellectual challenges, initiating conversations between biologists and engineers. The biologists were interested in how termites kept their farmed basidiomycete fungus free from parasites and discovered experimentally that termites can sniff out parasitic ascomycete fungi, proceed to anoint them with broad-spectrum fungicides and bury them resulting in mortality-yielding anoxia. High levels of humidity and carbon dioxide inside soil nests are conducive to the growth of parasitic fungi whose density is likely actively supressed by eradication of incipient foci of parasite growth by the termite farmers. The engineers were interested in how the mound acquired its strength, stability and longevity while allowing gas exchange. They discovered that the safety factor of termite mounds is very high, that termite-manipulated soil achieves great strength and weathering resistance, that termites manipulate the water content of soil between its plastic and liquid limits and that mounds have a more porous exterior shell and a less porous core. Dialogues between biologists and engineers have enabled insights into the bio-engineering aspects of animal-built architecture. The natural biological constraints of the termite builders (e.g. size, load-carrying ability in relation to particle grain size, caste) and available material (red soil containing organic matter) in the presence of water have been realistically incorporated into modelling the greenhouses that harbour termites and their crops.\n</p></div>","PeriodicalId":675,"journal":{"name":"Journal of the Indian Institute of Science","volume":"103 4","pages":"1093 - 1104"},"PeriodicalIF":1.8000,"publicationDate":"2023-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Indian Institute of Science","FirstCategoryId":"103","ListUrlMain":"https://link.springer.com/article/10.1007/s41745-023-00372-x","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The architectural feats of termites and their farming capabilities have been admired by biologists, engineers and architects and have inspired writers including early natural historians. South India is endowed with termite mud castles; their seeming impregnability threw up intellectual challenges, initiating conversations between biologists and engineers. The biologists were interested in how termites kept their farmed basidiomycete fungus free from parasites and discovered experimentally that termites can sniff out parasitic ascomycete fungi, proceed to anoint them with broad-spectrum fungicides and bury them resulting in mortality-yielding anoxia. High levels of humidity and carbon dioxide inside soil nests are conducive to the growth of parasitic fungi whose density is likely actively supressed by eradication of incipient foci of parasite growth by the termite farmers. The engineers were interested in how the mound acquired its strength, stability and longevity while allowing gas exchange. They discovered that the safety factor of termite mounds is very high, that termite-manipulated soil achieves great strength and weathering resistance, that termites manipulate the water content of soil between its plastic and liquid limits and that mounds have a more porous exterior shell and a less porous core. Dialogues between biologists and engineers have enabled insights into the bio-engineering aspects of animal-built architecture. The natural biological constraints of the termite builders (e.g. size, load-carrying ability in relation to particle grain size, caste) and available material (red soil containing organic matter) in the presence of water have been realistically incorporated into modelling the greenhouses that harbour termites and their crops.
期刊介绍:
Started in 1914 as the second scientific journal to be published from India, the Journal of the Indian Institute of Science became a multidisciplinary reviews journal covering all disciplines of science, engineering and technology in 2007. Since then each issue is devoted to a specific topic of contemporary research interest and guest-edited by eminent researchers. Authors selected by the Guest Editor(s) and/or the Editorial Board are invited to submit their review articles; each issue is expected to serve as a state-of-the-art review of a topic from multiple viewpoints.