A Multiclass Deep Learning Approach for LULC Classification of Multispectral Satellite Images

Dinesh Sathyanarayanan, D. Anudeep, C. A. Keshav Das, Sanat Bhanadarkar, U. D, R. Hebbar, K. Raj
{"title":"A Multiclass Deep Learning Approach for LULC Classification of Multispectral Satellite Images","authors":"Dinesh Sathyanarayanan, D. Anudeep, C. A. Keshav Das, Sanat Bhanadarkar, U. D, R. Hebbar, K. Raj","doi":"10.1109/InGARSS48198.2020.9358947","DOIUrl":null,"url":null,"abstract":"In general, a visual interpretation technique is adopted for mapping of Land Use / Land Cover (LULC) using temporal satellite data. Although highly accurate, the process is tedious, time consuming and requires a significant amount of domain knowledge. This limitation introduces a scope for partial automation to reduce manual effort involved in interpretation, while maintaining baseline accuracy. The research explores a novel multi-class training approach using a Deep Learning (DL) model to generate major LULC classes. Five spectral bands, namely Blue, Green, Red, Near-Infrared (NIR) and Short wave Infrared (SWIR) from the Sentinel-2A satellite, covering Mandya, Karnataka, India was used to train the model. An existing LULC map of the region was used as an input for automatically generating labeled training samples and a modified SegNet was implemented for classification. Four major LULC classes of interest - water bodies, forest lands, croplands, built-up were classified with an average F1 score of 0.84. The trained model applied to other regions has shown encouraging results which makes this an effective method to explore the generation of LULC maps.","PeriodicalId":6797,"journal":{"name":"2020 IEEE India Geoscience and Remote Sensing Symposium (InGARSS)","volume":"77 1","pages":"102-105"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE India Geoscience and Remote Sensing Symposium (InGARSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/InGARSS48198.2020.9358947","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In general, a visual interpretation technique is adopted for mapping of Land Use / Land Cover (LULC) using temporal satellite data. Although highly accurate, the process is tedious, time consuming and requires a significant amount of domain knowledge. This limitation introduces a scope for partial automation to reduce manual effort involved in interpretation, while maintaining baseline accuracy. The research explores a novel multi-class training approach using a Deep Learning (DL) model to generate major LULC classes. Five spectral bands, namely Blue, Green, Red, Near-Infrared (NIR) and Short wave Infrared (SWIR) from the Sentinel-2A satellite, covering Mandya, Karnataka, India was used to train the model. An existing LULC map of the region was used as an input for automatically generating labeled training samples and a modified SegNet was implemented for classification. Four major LULC classes of interest - water bodies, forest lands, croplands, built-up were classified with an average F1 score of 0.84. The trained model applied to other regions has shown encouraging results which makes this an effective method to explore the generation of LULC maps.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种多光谱卫星图像LULC分类的多类深度学习方法
一般来说,土地利用/土地覆盖(LULC)制图采用目视解译技术。虽然高度准确,但这个过程冗长、耗时,并且需要大量的领域知识。这个限制引入了部分自动化的范围,以减少解释中涉及的手工工作,同时保持基线准确性。该研究探索了一种新的多类训练方法,使用深度学习(DL)模型来生成主要的LULC类。使用覆盖印度卡纳塔克邦曼迪亚的Sentinel-2A卫星的蓝、绿、红、近红外和短波红外5个光谱波段对模型进行训练。使用现有区域的LULC地图作为自动生成标记训练样本的输入,并实现改进的SegNet进行分类。水体、林地、农田、建筑物4个主要的土地利用价值等级,F1平均得分为0.84。将训练后的模型应用于其他地区取得了令人鼓舞的效果,这是探索LULC地图生成的有效方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
InGARSS 2020 Copyright Page Automatic Road Delineation Using Deep Neural Network Sparse Representation of Injected Details for MRA-Based Pansharpening InGARSS 2020 Reviewers Experimental Analysis of the Hongqi-1 H9 Satellite Imagery for Geometric Positioning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1