Variational Deep Learning for Low-Dose Computed Tomography

Erich Kobler, Matthew Muckley, Baiyu Chen, F. Knoll, K. Hammernik, T. Pock, D. Sodickson, R. Otazo
{"title":"Variational Deep Learning for Low-Dose Computed Tomography","authors":"Erich Kobler, Matthew Muckley, Baiyu Chen, F. Knoll, K. Hammernik, T. Pock, D. Sodickson, R. Otazo","doi":"10.1109/ICASSP.2018.8462312","DOIUrl":null,"url":null,"abstract":"In this work, we propose a learning-based variational network (VN) approach for reconstruction of low-dose 3D computed tomography data. We focus on two methods to decrease the radiation dose: (1) x-ray tube current reduction, which reduces the signal-to-noise ratio, and (2) x-ray beam interruption, which undersamples data and results in images with aliasing artifacts. While the learned VN denoises the current-reduced images in the first case, it reconstructs the undersampled data in the second case. Different VNs for denoising and reconstruction are trained on a single clinical 3D abdominal data set. The VNs are compared against state-of-the-art model-based denoising and sparse reconstruction techniques on a different clinical abdominal 3D data set with 4-fold dose reduction. Our results suggest that the proposed VNs enable higher radiation dose reductions and/or increase the image quality for a given dose.","PeriodicalId":6638,"journal":{"name":"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"35 1","pages":"6687-6691"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2018.8462312","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

In this work, we propose a learning-based variational network (VN) approach for reconstruction of low-dose 3D computed tomography data. We focus on two methods to decrease the radiation dose: (1) x-ray tube current reduction, which reduces the signal-to-noise ratio, and (2) x-ray beam interruption, which undersamples data and results in images with aliasing artifacts. While the learned VN denoises the current-reduced images in the first case, it reconstructs the undersampled data in the second case. Different VNs for denoising and reconstruction are trained on a single clinical 3D abdominal data set. The VNs are compared against state-of-the-art model-based denoising and sparse reconstruction techniques on a different clinical abdominal 3D data set with 4-fold dose reduction. Our results suggest that the proposed VNs enable higher radiation dose reductions and/or increase the image quality for a given dose.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
低剂量计算机断层扫描的变分深度学习
在这项工作中,我们提出了一种基于学习的变分网络(VN)方法来重建低剂量三维计算机断层扫描数据。我们重点研究了两种降低辐射剂量的方法:(1)减小x射线管电流,从而降低信噪比;(2)x射线束中断,从而对数据进行欠采样,导致图像出现混叠伪影。当学习到的VN在第一种情况下对电流降低的图像去噪时,它在第二种情况下重建欠采样数据。在单个临床三维腹部数据集上训练不同的VNs进行去噪和重建。VNs与最先进的基于模型的去噪和稀疏重建技术在不同的临床腹部3D数据集上进行了比较,剂量减少了4倍。我们的研究结果表明,所提出的VNs能够在给定剂量下实现更高的辐射剂量降低和/或提高图像质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Reduced Dimension Minimum BER PSK Precoding for Constrained Transmit Signals in Massive MIMO Low Complexity Joint RDO of Prediction Units Couples for HEVC Intra Coding Non-Native Children Speech Recognition Through Transfer Learning Synthesis of Images by Two-Stage Generative Adversarial Networks Statistical T+2d Subband Modelling for Crowd Counting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1