Z. Huo, D. Duan, Tengyu Ma, Qiwen Jiang, Zihan Zhang, Decheng An, F. Tian, T. Cui
{"title":"First-principles study on the conventional superconductivity of N-doped fcc-LuH3","authors":"Z. Huo, D. Duan, Tengyu Ma, Qiwen Jiang, Zihan Zhang, Decheng An, F. Tian, T. Cui","doi":"10.1063/5.0151844","DOIUrl":null,"url":null,"abstract":"Recently, room-temperature superconductivity has been reported in a nitrogen-doped lutetium hydride at near-ambient pressure [Dasenbrock-Gammon et al., Nature 615, 244 (2023)]. The superconducting properties might arise from Fm3̄m-LuH3−δNε. Here, we systematically study the phase diagram of Lu–N–H at 1 GPa using first-principles calculations, and we do not find any thermodynamically stable ternary compounds. In addition, we calculate the dynamic stability and superconducting properties of N-doped Fm3̄m-LuH3 using the virtual crystal approximation (VCA) and the supercell method. The R3m-Lu2H5N predicted using the supercell method could be dynamically stable at 50 GPa, with a Tc of 27 K. According to the VCA method, the highest Tc is 22 K, obtained with 1% N-doping at 30 GPa. Moreover, the doping of nitrogen atoms into Fm3̄m-LuH3 slightly enhances Tc, but raises the dynamically stable pressure. Our theoretical results show that the Tc values of N-doped LuH3 estimated using the Allen–Dynes-modified McMillan equation are much lower than room temperature.","PeriodicalId":54221,"journal":{"name":"Matter and Radiation at Extremes","volume":"17 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2023-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matter and Radiation at Extremes","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0151844","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 16
Abstract
Recently, room-temperature superconductivity has been reported in a nitrogen-doped lutetium hydride at near-ambient pressure [Dasenbrock-Gammon et al., Nature 615, 244 (2023)]. The superconducting properties might arise from Fm3̄m-LuH3−δNε. Here, we systematically study the phase diagram of Lu–N–H at 1 GPa using first-principles calculations, and we do not find any thermodynamically stable ternary compounds. In addition, we calculate the dynamic stability and superconducting properties of N-doped Fm3̄m-LuH3 using the virtual crystal approximation (VCA) and the supercell method. The R3m-Lu2H5N predicted using the supercell method could be dynamically stable at 50 GPa, with a Tc of 27 K. According to the VCA method, the highest Tc is 22 K, obtained with 1% N-doping at 30 GPa. Moreover, the doping of nitrogen atoms into Fm3̄m-LuH3 slightly enhances Tc, but raises the dynamically stable pressure. Our theoretical results show that the Tc values of N-doped LuH3 estimated using the Allen–Dynes-modified McMillan equation are much lower than room temperature.
期刊介绍:
Matter and Radiation at Extremes (MRE), is committed to the publication of original and impactful research and review papers that address extreme states of matter and radiation, and the associated science and technology that are employed to produce and diagnose these conditions in the laboratory. Drivers, targets and diagnostics are included along with related numerical simulation and computational methods. It aims to provide a peer-reviewed platform for the international physics community and promote worldwide dissemination of the latest and impactful research in related fields.