Hydrolytic Oxidation of Cellobiose Using Catalysts Containing Noble Metals

Reactions Pub Date : 2022-11-16 DOI:10.3390/reactions3040039
O. Manaenkov, O. Kislitsa, E. Ratkevich, Yu. Kosivtsov, V. Sapunov, V. Matveeva
{"title":"Hydrolytic Oxidation of Cellobiose Using Catalysts Containing Noble Metals","authors":"O. Manaenkov, O. Kislitsa, E. Ratkevich, Yu. Kosivtsov, V. Sapunov, V. Matveeva","doi":"10.3390/reactions3040039","DOIUrl":null,"url":null,"abstract":"Studies of the processes of the hydrolytic oxidation of disaccharides are the first step towards the development of technologies for the direct conversion of plant polysaccharides, primarily cellulose, into aldonic and aldaric acids, which are widely used in chemical synthesis and various industries. In this study, heterogeneous catalysts based on a porous matrix of hypercrosslinked polystyrene (HPS) and noble metals (Pt, Au, Ru, and Pd) were proposed for the hydrolytic oxidation of cellobiose to gluconic and glucaric acids. The catalysts were characterized using low-temperature nitrogen adsorption, hydrogen chemisorption, electron microscopy, and other methods. In particular, it was shown that the Pt-containing catalyst contained, on average, six times more active centers on the surface, which made it more promising for use in this reaction. At a temperature of 145 °C, an O2 pressure of 5 bars, and a substrate/catalyst weight ratio of 4/1, the yields of gluconic and glucaric acids reached 21.6 and 63.4%, respectively. Based on the data obtained, the mathematical model of the cellobiose hydrolytic oxidation kinetics in the presence of 3% Pt/HPS MN270 was developed, and the parameter estimation was carried out. The formal description of the kinetics of cellobiose hydrolytic oxidation was obtained.","PeriodicalId":20873,"journal":{"name":"Reactions","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/reactions3040039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Studies of the processes of the hydrolytic oxidation of disaccharides are the first step towards the development of technologies for the direct conversion of plant polysaccharides, primarily cellulose, into aldonic and aldaric acids, which are widely used in chemical synthesis and various industries. In this study, heterogeneous catalysts based on a porous matrix of hypercrosslinked polystyrene (HPS) and noble metals (Pt, Au, Ru, and Pd) were proposed for the hydrolytic oxidation of cellobiose to gluconic and glucaric acids. The catalysts were characterized using low-temperature nitrogen adsorption, hydrogen chemisorption, electron microscopy, and other methods. In particular, it was shown that the Pt-containing catalyst contained, on average, six times more active centers on the surface, which made it more promising for use in this reaction. At a temperature of 145 °C, an O2 pressure of 5 bars, and a substrate/catalyst weight ratio of 4/1, the yields of gluconic and glucaric acids reached 21.6 and 63.4%, respectively. Based on the data obtained, the mathematical model of the cellobiose hydrolytic oxidation kinetics in the presence of 3% Pt/HPS MN270 was developed, and the parameter estimation was carried out. The formal description of the kinetics of cellobiose hydrolytic oxidation was obtained.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
含贵金属催化剂水解氧化纤维素二糖的研究
对双糖水解氧化过程的研究是开发直接将植物多糖(主要是纤维素)转化为醛酸和醛酸的技术的第一步,醛酸和醛酸广泛应用于化学合成和各种工业。在这项研究中,提出了基于高交联聚苯乙烯(HPS)和贵金属(Pt, Au, Ru和Pd)的多孔基质的多相催化剂,用于纤维素二糖水解氧化成葡萄糖酸和葡萄糖酸。采用低温氮气吸附、氢化学吸附、电子显微镜等方法对催化剂进行了表征。特别是,研究表明,含pt催化剂表面平均含有6倍以上的活性中心,这使得它更有希望用于该反应。在145℃,O2压力为5 bar,底物/催化剂质量比为4/1的条件下,葡萄糖酸和葡萄糖酸的产率分别达到21.6和63.4%。在此基础上,建立了3% Pt/HPS MN270存在下纤维素二糖水解氧化动力学的数学模型,并进行了参数估计。得到了纤维素二糖水解氧化动力学的形式化描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
0
期刊最新文献
Autocatalytic Acetylation of Crude Glycerol Using Acetic Acid: A Kinetic Model Investigation of the First Hydrogenation of LaNi5 Furfural and Levulinic Acid: Synthesis of Platform Molecules from Keggin Heteropolyacid-Catalyzed Biomass Conversion Reactions Advanced Thermogravimetric Analyses of Stem Wood and Straw Devolatilization: Torrefaction through Combustion Modeling of the Anaerobic Digestion of Biomass Produced by Agricultural Residues in Greece
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1