On the Nuclear Coupling of Proton and Electron

V. Krasnoholovets, Y. Zabulonov, Ihor Zolkin
{"title":"On the Nuclear Coupling of Proton and Electron","authors":"V. Krasnoholovets, Y. Zabulonov, Ihor Zolkin","doi":"10.13189/UJPA.2016.100306","DOIUrl":null,"url":null,"abstract":"We study both experimentally and theoretically the creation of a new physical entity, a particle in which the proton and electron form a stable pair with a tiny size typical for a nucleon. A new theoretical approach to study atomic, sub atomic and nuclear systems is suggested. In the framework of this new approach, which takes into account a submicroscopic concept of physics, we discuss similar experimental results of other researchers dealing with low energy nuclear reactions in a solid, plasma, sonofusion and the electrostatic field generated by piezocrystals. It is shown that the formation of sub atomic particles, which we name subatoms, involves an inerton cloud of an atom from the environment. The inerton cloud, as a carrier of mass, is absorbed by the electron and proton, which strongly couples these two particles in a new stable entity - the subhydrogen. Besides, we have generated a subhelium and argue the existence of subdeuterium. In addition to these subatoms there exist also nuclear pairs formed by a subatom with proton, deuteron and neutron.","PeriodicalId":23443,"journal":{"name":"Universal Journal of Physics and Application","volume":"25 1","pages":"90-103"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Universal Journal of Physics and Application","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13189/UJPA.2016.100306","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We study both experimentally and theoretically the creation of a new physical entity, a particle in which the proton and electron form a stable pair with a tiny size typical for a nucleon. A new theoretical approach to study atomic, sub atomic and nuclear systems is suggested. In the framework of this new approach, which takes into account a submicroscopic concept of physics, we discuss similar experimental results of other researchers dealing with low energy nuclear reactions in a solid, plasma, sonofusion and the electrostatic field generated by piezocrystals. It is shown that the formation of sub atomic particles, which we name subatoms, involves an inerton cloud of an atom from the environment. The inerton cloud, as a carrier of mass, is absorbed by the electron and proton, which strongly couples these two particles in a new stable entity - the subhydrogen. Besides, we have generated a subhelium and argue the existence of subdeuterium. In addition to these subatoms there exist also nuclear pairs formed by a subatom with proton, deuteron and neutron.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
质子和电子的核耦合
我们从实验和理论上研究了一种新的物理实体的创造,一种质子和电子形成稳定对的粒子,具有典型的核子的微小尺寸。提出了一种新的理论方法来研究原子、亚原子和核系统。在这种考虑了亚微观物理概念的新方法的框架内,我们讨论了其他研究人员处理固体、等离子体、声融合和压电晶体产生的静电场中的低能核反应的类似实验结果。结果表明,亚原子粒子(我们称之为亚原子)的形成涉及到来自环境的原子的惯性云。作为质量载体的介子云被电子和质子吸收,电子和质子将这两个粒子强耦合成一个新的稳定实体——亚氢。此外,我们还产生了亚氦,并论证了亚氘的存在。除了这些亚原子之外,还存在由亚原子与质子、氘核和中子组成的核对。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Disk of Concave Mirrors: An Experiment of the Light with Contradictory Formulas The NOW of time and the Pioneer Anomaly Tachyons, the Four-Momentum Formalism and Simultaneity Killing Vector Fields and Conserved Currents on Rotationally Symmetric Space-time Discovery of Ambiguity in the Traditional Norms of Specifying Physical Quantities along the Axes of Coordinates in Drawing Data Based Graphs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1