Analysis of Delta (Indian) Variant of SARS-CoV-2 Infectivity using Resonant Recognition Model

I. Cosic, D. Cosic, I. Loncarevic
{"title":"Analysis of Delta (Indian) Variant of SARS-CoV-2 Infectivity using Resonant Recognition Model","authors":"I. Cosic, D. Cosic, I. Loncarevic","doi":"10.18483/ijsci.2495","DOIUrl":null,"url":null,"abstract":"This manuscript is continuation of our previous work, where we have analyzed different variants of SARS-CoV-2 virus (UK, South African, Brazilian, and Indian (Kappa)) using Resonant Recognition Model (RRM), which is biophysical model capable to analyze protein function and interaction. We have previously identified correlation between infectivity of these SARS-CoV-2 virus variants with strength of signal at RRM characteristic frequencies for each variant. Here, we have extended this analysis for Delta (Indian) SARS-CoV-2 virus variant, which is extremely infectious and is rapidly spreading around the World. Our results with Delta (Indian) variant are in complete agreement with our previous RRM proposition that viral infectivity is proportional to strength of signal at RRM characteristic frequency. These results can explain why Delta (Indian) variant is more infectious. With strong correlation obtained in all these examples, we can propose here that RRM model can be used as general tool to analyze infectivity of mutated virus variants.","PeriodicalId":14423,"journal":{"name":"International journal of sciences","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18483/ijsci.2495","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This manuscript is continuation of our previous work, where we have analyzed different variants of SARS-CoV-2 virus (UK, South African, Brazilian, and Indian (Kappa)) using Resonant Recognition Model (RRM), which is biophysical model capable to analyze protein function and interaction. We have previously identified correlation between infectivity of these SARS-CoV-2 virus variants with strength of signal at RRM characteristic frequencies for each variant. Here, we have extended this analysis for Delta (Indian) SARS-CoV-2 virus variant, which is extremely infectious and is rapidly spreading around the World. Our results with Delta (Indian) variant are in complete agreement with our previous RRM proposition that viral infectivity is proportional to strength of signal at RRM characteristic frequency. These results can explain why Delta (Indian) variant is more infectious. With strong correlation obtained in all these examples, we can propose here that RRM model can be used as general tool to analyze infectivity of mutated virus variants.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于共振识别模型的SARS-CoV-2 δ(印度)变体传染性分析
这篇论文是我们之前工作的延续,我们使用共振识别模型(RRM)分析了SARS-CoV-2病毒的不同变体(英国、南非、巴西和印度(Kappa)),这是一种能够分析蛋白质功能和相互作用的生物物理模型。我们之前已经确定了这些SARS-CoV-2病毒变体的传染性与每种变体在RRM特征频率上的信号强度之间的相关性。在这里,我们将这一分析扩展到Delta(印度)SARS-CoV-2病毒变体,这种病毒具有极强的传染性,正在世界各地迅速传播。我们对Delta(印度)变体的研究结果与我们之前的RRM命题完全一致,即病毒传染性与RRM特征频率上的信号强度成正比。这些结果可以解释为什么三角洲(印度)变异体更具传染性。所有这些例子都有很强的相关性,因此我们可以提出RRM模型可以作为分析变异病毒传染性的通用工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
q-Gaussian Tsallis Line Shapes and Raman Spectral Bands Postoperative Presentation of Lumbar Spinal Stenosis: A Case and Review of the Literature Iron Oxide Fe3O4 Nanoparticles with Intrinsic Conducting Polymers and Biochar to Improve the Electromagnetic Shielding Performance of Light Weight Absorption-Type Materials Consociation of Sunflower and Fodder Oilseeds - An Alternative for Mixed Production Systems Zap the Lead Problem: Cost-effective and Immediate Electrochemical Pipe Scale Accelerator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1