{"title":"Visual Guidance and Automatic Control for Robotic Personalized Stent Graft Manufacturing","authors":"Yu Guo, Miao Sun, F. P. Lo, Benny P. L. Lo","doi":"10.1109/ICRA.2019.8794123","DOIUrl":null,"url":null,"abstract":"Personalized stent graft is designed to treat Abdominal Aortic Aneurysms (AAA). Due to the individual difference in arterial structures, stent graft has to be custom made for each AAA patient. Robotic platforms for autonomous personalized stent graft manufacturing have been proposed in recently which rely upon stereo vision systems for coordinating multiple robots for fabricating customized stent grafts. This paper proposes a novel hybrid vision system for real-time visual-sevoing for personalized stent-graft manufacturing. To coordinate the robotic arms, this system is based on projecting a dynamic stereo microscope coordinate system onto a static wide angle view stereo webcam coordinate system. The multiple stereo camera configuration enables accurate localization of the needle in 3D during the sewing process. The scale-invariant feature transform (SIFT) method and color filtering are implemented for stereo matching and feature identifications for object localization. To maintain the clear view of the sewing process, a visual-servoing system is developed for guiding the stereo microscopes for tracking the needle movements. The deep deterministic policy gradient (DDPG) reinforcement learning algorithm is developed for real-time intelligent robotic control. Experimental results have shown that the robotic arm can learn to reach the desired targets autonomously.","PeriodicalId":6730,"journal":{"name":"2019 International Conference on Robotics and Automation (ICRA)","volume":"11 1","pages":"8740-8746"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Robotics and Automation (ICRA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRA.2019.8794123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Personalized stent graft is designed to treat Abdominal Aortic Aneurysms (AAA). Due to the individual difference in arterial structures, stent graft has to be custom made for each AAA patient. Robotic platforms for autonomous personalized stent graft manufacturing have been proposed in recently which rely upon stereo vision systems for coordinating multiple robots for fabricating customized stent grafts. This paper proposes a novel hybrid vision system for real-time visual-sevoing for personalized stent-graft manufacturing. To coordinate the robotic arms, this system is based on projecting a dynamic stereo microscope coordinate system onto a static wide angle view stereo webcam coordinate system. The multiple stereo camera configuration enables accurate localization of the needle in 3D during the sewing process. The scale-invariant feature transform (SIFT) method and color filtering are implemented for stereo matching and feature identifications for object localization. To maintain the clear view of the sewing process, a visual-servoing system is developed for guiding the stereo microscopes for tracking the needle movements. The deep deterministic policy gradient (DDPG) reinforcement learning algorithm is developed for real-time intelligent robotic control. Experimental results have shown that the robotic arm can learn to reach the desired targets autonomously.