Review of Research on Vision-Based Parking Space Detection Method

IF 0.8 4区 计算机科学 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS International Journal of Web Services Research Pub Date : 2022-01-01 DOI:10.4018/ijwsr.304061
Yong Ma, Yangguo Liu, Shiyun Shao, Jiale Zhao, Jun Tang
{"title":"Review of Research on Vision-Based Parking Space Detection Method","authors":"Yong Ma, Yangguo Liu, Shiyun Shao, Jiale Zhao, Jun Tang","doi":"10.4018/ijwsr.304061","DOIUrl":null,"url":null,"abstract":"Parking space detection is an important part of the automatic parking assistance system. How to use existing sensors to accurately and effectively detect parking spaces is the key problem that has not been solved in the automatic parking system. Advances in Artificial Intelligence and sensing technologies have motivated significant research and development in parking space detection in the automotive field. Firstly, based on extensive investigation of a lot of literature and the latest re-search results, this paper divides parking space detection methods into methods based on traditional visual features and those methods based on deep learning and introduces them separately. Secondly, the advantages and disadvantages of each parking space detection method are analyzed, compared, and summarized. And the benchmark datasets and algorithm evaluation standards commonly used in parking space detection methods are introduced. Finally, the vision-based parking space detection method is summarized, and the future development trend is prospected.","PeriodicalId":54936,"journal":{"name":"International Journal of Web Services Research","volume":"15 1","pages":"1-25"},"PeriodicalIF":0.8000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Web Services Research","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.4018/ijwsr.304061","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 5

Abstract

Parking space detection is an important part of the automatic parking assistance system. How to use existing sensors to accurately and effectively detect parking spaces is the key problem that has not been solved in the automatic parking system. Advances in Artificial Intelligence and sensing technologies have motivated significant research and development in parking space detection in the automotive field. Firstly, based on extensive investigation of a lot of literature and the latest re-search results, this paper divides parking space detection methods into methods based on traditional visual features and those methods based on deep learning and introduces them separately. Secondly, the advantages and disadvantages of each parking space detection method are analyzed, compared, and summarized. And the benchmark datasets and algorithm evaluation standards commonly used in parking space detection methods are introduced. Finally, the vision-based parking space detection method is summarized, and the future development trend is prospected.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于视觉的车位检测方法研究综述
车位检测是自动泊车辅助系统的重要组成部分。如何利用现有的传感器准确有效地检测停车位是自动泊车系统中尚未解决的关键问题。人工智能和传感技术的进步推动了汽车领域停车位检测的重大研究和发展。首先,在广泛查阅大量文献和最新研究成果的基础上,将停车位检测方法分为基于传统视觉特征的方法和基于深度学习的方法,并分别进行了介绍。其次,对各种停车位检测方法的优缺点进行了分析、比较和总结。介绍了车位检测方法中常用的基准数据集和算法评价标准。最后,对基于视觉的车位检测方法进行了总结,并对未来的发展趋势进行了展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Web Services Research
International Journal of Web Services Research 工程技术-计算机:软件工程
CiteScore
2.40
自引率
0.00%
发文量
19
审稿时长
>12 weeks
期刊介绍: The International Journal of Web Services Research (IJWSR) is the first refereed, international publication featuring the latest research findings and industry solutions involving all aspects of Web services technology. This journal covers advancements, standards, and practices of Web services, as well as identifies emerging research topics and defines the future of Web services on grid computing, multimedia, and communication. IJWSR provides an open, formal publication for high quality articles developed by theoreticians, educators, developers, researchers, and practitioners for those desiring to stay abreast of challenges in Web services technology.
期刊最新文献
A Quasi-Newton Matrix Factorization-Based Model for Recommendation A Service Recommendation Algorithm Based on Self-Attention Mechanism and DeepFM Secure Cloud Storage and Retrieval of Personal Health Data From Smart Wearable Devices With Privacy-Preserving Techniques User Interaction Within Online Innovation Communities Research on a New Reconstruction Technology and Evaluation Method for 3D Digital Core Pore Structure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1