The Wisdom in Teeth: Neuronal Differentiation of Dental Pulp Cells.

IF 1.2 4区 医学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Cellular reprogramming Pub Date : 2023-02-01 DOI:10.1089/cell.2022.0102
Bendegúz Sramkó, Anna Földes, Kristóf Kádár, Gábor Varga, Ákos Zsembery, Karolina Pircs
{"title":"The Wisdom in Teeth: Neuronal Differentiation of Dental Pulp Cells.","authors":"Bendegúz Sramkó,&nbsp;Anna Földes,&nbsp;Kristóf Kádár,&nbsp;Gábor Varga,&nbsp;Ákos Zsembery,&nbsp;Karolina Pircs","doi":"10.1089/cell.2022.0102","DOIUrl":null,"url":null,"abstract":"<p><p>Mesenchymal stem/stromal cells (MSCs) are found in almost all postnatal organs. Under appropriate environmental cues, multipotency enables MSCs to serve as progenitors for several lineage-specific, differentiated cell types. <i>In vitro</i> expansion and differentiation of MSCs give the opportunity to obtain hardly available somatic cells, such as neurons. The neurogenic potential of MSCs makes them a promising, autologous source to restore damaged tissue and as such, they have received much attention in the field of regenerative medicine. Several stem cell pool candidates have been studied thus far, but only a few of them showed neurogenic differentiation potential. Due to their embryonic ontology, stem cells residing in the stroma of the dental pulp chamber are an exciting source for <i>in vitro</i> neural cell differentiation. In this study, we review the key properties of dental pulp stem cells (DPSCs), with a particular focus on their neurogenic potential. Moreover, we summarize the various presently available methods used for neural differentiation of human DPSCs also emphasizing the difficulties in reproducibly high production of such cells. We postulate that because DPSCs are stem cells with very close ontology to neurogenic lineages, they may serve as excellent targets for neuronal differentiation <i>in vitro</i> and even for direct reprogramming.</p>","PeriodicalId":9708,"journal":{"name":"Cellular reprogramming","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9963504/pdf/","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular reprogramming","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/cell.2022.0102","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 4

Abstract

Mesenchymal stem/stromal cells (MSCs) are found in almost all postnatal organs. Under appropriate environmental cues, multipotency enables MSCs to serve as progenitors for several lineage-specific, differentiated cell types. In vitro expansion and differentiation of MSCs give the opportunity to obtain hardly available somatic cells, such as neurons. The neurogenic potential of MSCs makes them a promising, autologous source to restore damaged tissue and as such, they have received much attention in the field of regenerative medicine. Several stem cell pool candidates have been studied thus far, but only a few of them showed neurogenic differentiation potential. Due to their embryonic ontology, stem cells residing in the stroma of the dental pulp chamber are an exciting source for in vitro neural cell differentiation. In this study, we review the key properties of dental pulp stem cells (DPSCs), with a particular focus on their neurogenic potential. Moreover, we summarize the various presently available methods used for neural differentiation of human DPSCs also emphasizing the difficulties in reproducibly high production of such cells. We postulate that because DPSCs are stem cells with very close ontology to neurogenic lineages, they may serve as excellent targets for neuronal differentiation in vitro and even for direct reprogramming.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
牙齿中的智慧:牙髓细胞的神经元分化。
间充质干细胞/基质细胞(MSCs)几乎存在于所有出生后器官中。在适当的环境提示下,多能性使MSCs能够作为几种谱系特异性分化细胞类型的祖细胞。骨髓间充质干细胞的体外扩增和分化为获得难以获得的体细胞(如神经元)提供了机会。间充质干细胞的神经源性使其成为修复受损组织的一种有前途的自体来源,因此在再生医学领域受到了广泛的关注。到目前为止,已经研究了几个候选干细胞库,但只有少数干细胞显示出神经源性分化潜力。由于其胚胎本体,居住在牙髓腔基质中的干细胞是体外神经细胞分化的一个令人兴奋的来源。在这项研究中,我们回顾了牙髓干细胞(DPSCs)的关键特性,特别关注它们的神经源性潜力。此外,我们总结了目前用于人类DPSCs神经分化的各种可用方法,并强调了可重复高产量这种细胞的困难。我们假设,由于DPSCs是与神经源性谱系非常接近的干细胞,它们可能成为体外神经元分化甚至直接重编程的绝佳靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cellular reprogramming
Cellular reprogramming CELL & TISSUE ENGINEERING-BIOTECHNOLOGY & APPLIED MICROBIOLOGY
CiteScore
2.50
自引率
6.20%
发文量
37
审稿时长
3 months
期刊介绍: Cellular Reprogramming is the premier journal dedicated to providing new insights on the etiology, development, and potential treatment of various diseases through reprogramming cellular mechanisms. The Journal delivers information on cutting-edge techniques and the latest high-quality research and discoveries that are transforming biomedical research. Cellular Reprogramming coverage includes: Somatic cell nuclear transfer and reprogramming in early embryos Embryonic stem cells Nuclear transfer stem cells (stem cells derived from nuclear transfer embryos) Generation of induced pluripotent stem (iPS) cells and/or potential for cell-based therapies Epigenetics Adult stem cells and pluripotency.
期刊最新文献
A New Frontier in Tumor Eradication: Harnessing In Vivo Cellular Reprogramming for Durable Cancer Immunotherapy. Deciphering the Sertoli Cell Signaling Pathway with Protein-Protein Interaction, Single-Cell Sequencing, and Gene Ontology. Reprogramming Stars #18: Engineering Cell Fates and Preventing Disease by Repressing Unwanted Plasticity-An Interview with Dr. Moritz Mall. Genome-Scale Analyses Reveal Roadblocks to Monkey Cloning. Rewinding the Tape to Identify Intrinsic Determinants of Reprogramming Potential.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1