Multidisciplinary collaborative optimization based on relaxation method for solving complex problems

H. Chagraoui, M. Soula
{"title":"Multidisciplinary collaborative optimization based on relaxation method for solving complex problems","authors":"H. Chagraoui, M. Soula","doi":"10.1177/1063293X20958921","DOIUrl":null,"url":null,"abstract":"The purpose of the present work is to improve the performance of the standard collaborative optimization (CO) approach based on an existing dynamic relaxation method. This approach may be weakened by starting design points. First, a New Relaxation (NR) method is proposed to solve the difficulties in convergence and low accuracy of CO. The new method is based on the existing dynamic relaxation method and it is achieved by changing the system-level consistency equality constraints into relaxation inequality constraints. Then, a Modified Collaborative Optimization (MCO) approach is proposed to eliminate the impact of the information inconsistency between the system-level and the discipline-level on the feasibility of optimal solutions. In the MCO approach, the impact of the inconsistency is treated by transforming the discipline-level constrained optimization problems into an unconstrained optimization problem using an exact penalty function. Based on the NR method, the performance of the MCO approach carried out by solving two multidisciplinary optimization problems. The obtained results show that the MCO approach has improved the convergence of CO significantly. These results prove that the present MCO succeeds in getting feasible solutions while the CO fails to provide feasible solutions with the used starting design points.","PeriodicalId":10680,"journal":{"name":"Concurrent Engineering","volume":"97 1","pages":"280 - 289"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concurrent Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/1063293X20958921","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The purpose of the present work is to improve the performance of the standard collaborative optimization (CO) approach based on an existing dynamic relaxation method. This approach may be weakened by starting design points. First, a New Relaxation (NR) method is proposed to solve the difficulties in convergence and low accuracy of CO. The new method is based on the existing dynamic relaxation method and it is achieved by changing the system-level consistency equality constraints into relaxation inequality constraints. Then, a Modified Collaborative Optimization (MCO) approach is proposed to eliminate the impact of the information inconsistency between the system-level and the discipline-level on the feasibility of optimal solutions. In the MCO approach, the impact of the inconsistency is treated by transforming the discipline-level constrained optimization problems into an unconstrained optimization problem using an exact penalty function. Based on the NR method, the performance of the MCO approach carried out by solving two multidisciplinary optimization problems. The obtained results show that the MCO approach has improved the convergence of CO significantly. These results prove that the present MCO succeeds in getting feasible solutions while the CO fails to provide feasible solutions with the used starting design points.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于松弛法的多学科协同优化求解复杂问题
本文的目的是改进基于现有动态松弛方法的标准协同优化(CO)方法的性能。这种方法可能会被起始设计点削弱。首先,在现有动态松弛方法的基础上,将系统级一致性等式约束改为松弛不等式约束,提出了一种新的松弛(NR)方法,解决了CO的收敛困难和精度低的问题。然后,提出了一种改进的协同优化方法,以消除系统级和学科级信息不一致对最优解可行性的影响。在MCO方法中,通过使用精确惩罚函数将学科级约束优化问题转化为无约束优化问题来处理不一致性的影响。在NR方法的基础上,通过求解两个多学科优化问题对MCO方法进行性能优化。结果表明,MCO方法显著提高了CO的收敛性。这些结果证明,目前的MCO能够成功地得到可行的解,而CO不能提供可行的解与所用的起始设计点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sensitivity study of process parameters of wire arc additive manufacturing using probabilistic deep learning and uncertainty quantification Retraction Notice Decision-making solutions based artificial intelligence and hybrid software for optimal sizing and energy management in a smart grid system Harness collaboration between manufacturing Small and medium-sized enterprises through a collaborative platform based on the business model canvas Research on the evolution law of cloud manufacturing service ecosystem based on multi-agent behavior simulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1