Quality Classification of Palm Oil Varieties Using Naive Bayes Classifier

N. Puspitasari, Rosmasari Rosmasari, Fhanji Wilis Pratama, H. Sulastri
{"title":"Quality Classification of Palm Oil Varieties Using Naive Bayes Classifier","authors":"N. Puspitasari, Rosmasari Rosmasari, Fhanji Wilis Pratama, H. Sulastri","doi":"10.31849/digitalzone.v13i1.9773","DOIUrl":null,"url":null,"abstract":"As one of the leading commodities of the Indonesian economy, the ever-increasing production of palm oil has created intense competition among palm oil (CPO) producers. This causes CPO producers to increase their palm oil production without compromising the quality of the palm oil produced. CPO producers are required to be able to objectively determine the quality of superior and precise oil palm varieties in order to produce high economic value palm oil. Therefore, a model is needed to determine the quality of oil palm from several existing varieties. The Naive Bayes Classifier method in this study was used to classify the quality of oil palm based on predetermined variables using a data set of 28 oil palm varieties. Method testing is done by using a confusion matrix and K-fold cross-validation scheme. This study shows a reasonably high accuracy value of 64.25% and a low error rate of 35.7%, indicating that the Naive Bayes Classifier can classify the quality of oil palm varieties quite well.  \n","PeriodicalId":33266,"journal":{"name":"Digital Zone Jurnal Teknologi Informasi dan Komunikasi","volume":"53 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Zone Jurnal Teknologi Informasi dan Komunikasi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31849/digitalzone.v13i1.9773","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

As one of the leading commodities of the Indonesian economy, the ever-increasing production of palm oil has created intense competition among palm oil (CPO) producers. This causes CPO producers to increase their palm oil production without compromising the quality of the palm oil produced. CPO producers are required to be able to objectively determine the quality of superior and precise oil palm varieties in order to produce high economic value palm oil. Therefore, a model is needed to determine the quality of oil palm from several existing varieties. The Naive Bayes Classifier method in this study was used to classify the quality of oil palm based on predetermined variables using a data set of 28 oil palm varieties. Method testing is done by using a confusion matrix and K-fold cross-validation scheme. This study shows a reasonably high accuracy value of 64.25% and a low error rate of 35.7%, indicating that the Naive Bayes Classifier can classify the quality of oil palm varieties quite well. 
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于朴素贝叶斯分类器的棕榈油品种质量分类
作为印尼经济的主要商品之一,棕榈油产量的不断增加导致了棕榈油生产商之间的激烈竞争。这导致CPO生产商在不影响棕榈油质量的情况下增加棕榈油产量。为了生产出高经济价值的棕榈油,要求CPO生产者能够客观地确定优质、精确的油棕品种的质量。因此,需要一个模型来从几个现有品种中确定油棕的质量。本研究利用28个油棕品种的数据集,基于预定变量,采用朴素贝叶斯分类器对油棕品质进行分类。方法测试是通过使用混淆矩阵和K-fold交叉验证方案完成的。本研究的准确率达到了64.25%,错误率为35.7%,表明朴素贝叶斯分类器可以很好地对油棕品种的质量进行分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
6
审稿时长
14 weeks
期刊最新文献
Analisis sentimen masyarakat terhadap informasi penerapan PPN atas renovasi dan membangun rumah sendiri pada media sosial youtube dengan metode svm dan naive bayes Simulasi Rancangan Smart Home System Menggunakan Cisco Packet Tracer Analisis kejahatan phising pada sektor e-commerce di marketplace shopee Combination of AHP and SMART Methods in Determining Recipients of Direct Village Fund Cash Assistance Fuzzy Inference System for The Risks Pregnancy Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1