Abigail J Clevenger, Logan Z Crawford, Dillon Noltensmeyer, Hamed Babaei, Samuel B Mabbott, Reza Avazmohammadi, Shreya Raghavan
{"title":"Rapid Prototypable Biomimetic Peristalsis Bioreactor Capable of Concurrent Shear and Multi-Axial Strain.","authors":"Abigail J Clevenger, Logan Z Crawford, Dillon Noltensmeyer, Hamed Babaei, Samuel B Mabbott, Reza Avazmohammadi, Shreya Raghavan","doi":"10.1159/000521752","DOIUrl":null,"url":null,"abstract":"<p><p>Peristalsis is a nuanced mechanical stimulus comprised of multi-axial strain (radial and axial strain) and shear stress. Forces associated with peristalsis regulate diverse biological functions including digestion, reproductive function, and urine dynamics. Given the central role peristalsis plays in physiology and pathophysiology, we were motivated to design a bioreactor capable of holistically mimicking peristalsis. We engineered a novel rotating screw-drive based design combined with a peristaltic pump, in order to deliver multi-axial strain and concurrent shear stress to a biocompatible polydimethylsiloxane (PDMS) membrane \"wall.\" Radial indentation and rotation of the screw drive against the wall demonstrated multi-axial strain evaluated via finite element modeling. Experimental measurements of strain using piezoelectric strain resistors were in close alignment with model-predicted values (15.9 ± 4.2% vs. 15.2% predicted). Modeling of shear stress on the \"wall\" indicated a uniform velocity profile and a moderate shear stress of 0.4 Pa. Human mesenchymal stem cells (hMSCs) seeded on the PDMS \"wall\" and stimulated with peristalsis demonstrated dramatic changes in actin filament alignment, proliferation, and nuclear morphology compared to static controls, perfusion, or strain, indicating that hMSCs sensed and responded to peristalsis uniquely. Lastly, significant differences were observed in gene expression patterns of calponin, caldesmon, smooth muscle actin, and transgelin, corroborating the propensity of hMSCs toward myogenic differentiation in response to peristalsis. Collectively, our data suggest that the peristalsis bioreactor is capable of generating concurrent multi-axial strain and shear stress on a \"wall.\" hMSCs experience peristalsis differently than perfusion or strain, resulting in changes in proliferation, actin fiber organization, smooth muscle actin expression, and genetic markers of differentiation. The peristalsis bioreactor device has broad utility in the study of development and disease in several organ systems.</p>","PeriodicalId":9717,"journal":{"name":"Cells Tissues Organs","volume":"212 1","pages":"96-110"},"PeriodicalIF":2.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9271135/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cells Tissues Organs","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1159/000521752","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/10 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
Peristalsis is a nuanced mechanical stimulus comprised of multi-axial strain (radial and axial strain) and shear stress. Forces associated with peristalsis regulate diverse biological functions including digestion, reproductive function, and urine dynamics. Given the central role peristalsis plays in physiology and pathophysiology, we were motivated to design a bioreactor capable of holistically mimicking peristalsis. We engineered a novel rotating screw-drive based design combined with a peristaltic pump, in order to deliver multi-axial strain and concurrent shear stress to a biocompatible polydimethylsiloxane (PDMS) membrane "wall." Radial indentation and rotation of the screw drive against the wall demonstrated multi-axial strain evaluated via finite element modeling. Experimental measurements of strain using piezoelectric strain resistors were in close alignment with model-predicted values (15.9 ± 4.2% vs. 15.2% predicted). Modeling of shear stress on the "wall" indicated a uniform velocity profile and a moderate shear stress of 0.4 Pa. Human mesenchymal stem cells (hMSCs) seeded on the PDMS "wall" and stimulated with peristalsis demonstrated dramatic changes in actin filament alignment, proliferation, and nuclear morphology compared to static controls, perfusion, or strain, indicating that hMSCs sensed and responded to peristalsis uniquely. Lastly, significant differences were observed in gene expression patterns of calponin, caldesmon, smooth muscle actin, and transgelin, corroborating the propensity of hMSCs toward myogenic differentiation in response to peristalsis. Collectively, our data suggest that the peristalsis bioreactor is capable of generating concurrent multi-axial strain and shear stress on a "wall." hMSCs experience peristalsis differently than perfusion or strain, resulting in changes in proliferation, actin fiber organization, smooth muscle actin expression, and genetic markers of differentiation. The peristalsis bioreactor device has broad utility in the study of development and disease in several organ systems.
期刊介绍:
''Cells Tissues Organs'' aims at bridging the gap between cell biology and developmental biology and the emerging fields of regenerative medicine (stem cell biology, tissue engineering, artificial organs, in vitro systems and transplantation biology). CTO offers a rapid and fair peer-review and exquisite reproduction quality. Special topic issues, entire issues of the journal devoted to a single research topic within the range of interests of the journal, are published at irregular intervals.