Mining evolutionary multi-branch trees from text streams

Xiting Wang, Shixia Liu, Yangqiu Song, B. Guo
{"title":"Mining evolutionary multi-branch trees from text streams","authors":"Xiting Wang, Shixia Liu, Yangqiu Song, B. Guo","doi":"10.1145/2487575.2487603","DOIUrl":null,"url":null,"abstract":"Understanding topic hierarchies in text streams and their evolution patterns over time is very important in many applications. In this paper, we propose an evolutionary multi-branch tree clustering method for streaming text data. We build evolutionary trees in a Bayesian online filtering framework. The tree construction is formulated as an online posterior estimation problem, which considers both the likelihood of the current tree and conditional prior given the previous tree. We also introduce a constraint model to compute the conditional prior of a tree in the multi-branch setting. Experiments on real world news data demonstrate that our algorithm can better incorporate historical tree information and is more efficient and effective than the traditional evolutionary hierarchical clustering algorithm.","PeriodicalId":20472,"journal":{"name":"Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining","volume":"43 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2013-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2487575.2487603","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

Understanding topic hierarchies in text streams and their evolution patterns over time is very important in many applications. In this paper, we propose an evolutionary multi-branch tree clustering method for streaming text data. We build evolutionary trees in a Bayesian online filtering framework. The tree construction is formulated as an online posterior estimation problem, which considers both the likelihood of the current tree and conditional prior given the previous tree. We also introduce a constraint model to compute the conditional prior of a tree in the multi-branch setting. Experiments on real world news data demonstrate that our algorithm can better incorporate historical tree information and is more efficient and effective than the traditional evolutionary hierarchical clustering algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从文本流中挖掘进化多分支树
在许多应用程序中,理解文本流中的主题层次结构及其随时间的演变模式非常重要。本文提出了一种用于流文本数据的进化多分支树聚类方法。我们在贝叶斯在线过滤框架中构建进化树。树的构造被表述为一个在线后验估计问题,它既考虑了当前树的可能性,也考虑了给定之前树的条件先验。我们还引入了一个约束模型来计算多分支环境下树的条件先验。在真实新闻数据上的实验表明,该算法能更好地融合历史树信息,比传统的进化层次聚类算法更高效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A general bootstrap performance diagnostic Flexible and robust co-regularized multi-domain graph clustering Beyond myopic inference in big data pipelines Constrained stochastic gradient descent for large-scale least squares problem Inferring distant-time location in low-sampling-rate trajectories
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1