Urban space change and future prediction of Kangpur Nagar, Uttar Pradesh using EO data

IF 1 4区 工程技术 Q4 ENGINEERING, ENVIRONMENTAL Environmental & Engineering Geoscience Pub Date : 2021-12-01 DOI:10.37023/ee.8.1-2.10
Shubham Sharma, S. Singh, S. Kanga, N. Kranjčić, B. Đurin
{"title":"Urban space\nchange and future prediction of Kangpur Nagar, Uttar Pradesh using EO data","authors":"Shubham Sharma, S. Singh, S. Kanga, N. Kranjčić, B. Đurin","doi":"10.37023/ee.8.1-2.10","DOIUrl":null,"url":null,"abstract":"Urban Land use changes, measurements, and the analysis of rate trends of growth would help in resources management and planning, etc. In this study, we analyze the urban change dynamics using a support vector machine model. This method derives the urban and rural land-use change and various components, such as population growth, built-up areas, and other utilities. Urban growth increases rapidly due to exponential growth of population, industrial growth, etc. The population growth also affects the availability of various purposes in its spatial distribution. In this present study, we carried out using multi-temporal satellite remote sensing data Landsat MSS (Multispectral scanner), ETM+ (Enhanced thematic mapper), OLI (Operational land imager) for the analysis of urban change dynamics between years 1980-1990, 1990-2003, 2012-2020 in Kanpur Nagar city in the state of Uttar Pradesh in India. In our study, we used SVM (Support Vector Machine) Model to analyze the urban change dynamics. A support vector machine classification technique was applied to generate the LULC maps using Landsat images of the years 1980, 1990, 2003, and 2020. Envi and ArcGIS software had used to identify the land cover changes and the applying urban simulation model (CA- Markov model) in Idrisi selva edition 17.0 software. The LULC maps of 2003 and 2020 were used to simulate the LULC projected map for 2050 using (Cellular automata) CA- Markov based simulation model.","PeriodicalId":50518,"journal":{"name":"Environmental & Engineering Geoscience","volume":"105 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental & Engineering Geoscience","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.37023/ee.8.1-2.10","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 1

Abstract

Urban Land use changes, measurements, and the analysis of rate trends of growth would help in resources management and planning, etc. In this study, we analyze the urban change dynamics using a support vector machine model. This method derives the urban and rural land-use change and various components, such as population growth, built-up areas, and other utilities. Urban growth increases rapidly due to exponential growth of population, industrial growth, etc. The population growth also affects the availability of various purposes in its spatial distribution. In this present study, we carried out using multi-temporal satellite remote sensing data Landsat MSS (Multispectral scanner), ETM+ (Enhanced thematic mapper), OLI (Operational land imager) for the analysis of urban change dynamics between years 1980-1990, 1990-2003, 2012-2020 in Kanpur Nagar city in the state of Uttar Pradesh in India. In our study, we used SVM (Support Vector Machine) Model to analyze the urban change dynamics. A support vector machine classification technique was applied to generate the LULC maps using Landsat images of the years 1980, 1990, 2003, and 2020. Envi and ArcGIS software had used to identify the land cover changes and the applying urban simulation model (CA- Markov model) in Idrisi selva edition 17.0 software. The LULC maps of 2003 and 2020 were used to simulate the LULC projected map for 2050 using (Cellular automata) CA- Markov based simulation model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于EO数据的北方邦康浦尔纳格尔城市空间变化及未来预测
城市土地利用变化、测量和增长率趋势分析将有助于资源管理和规划等。在本研究中,我们使用支持向量机模型分析城市变化动态。该方法推导出城市和农村土地利用变化及其各种组成部分,如人口增长、建成区和其他公用事业。由于人口指数增长、工业增长等原因,城市增长迅速。人口的增长也影响着其空间分布中各种用途的可得性。利用多时相卫星遥感数据Landsat MSS(多光谱扫描仪)、ETM+ (Enhanced thematic mapper)、OLI (Operational land imager)对印度北方邦坎普尔那格尔市1980-1990年、1990-2003年、2012-2020年的城市变化动态进行了分析。在我们的研究中,我们使用SVM(支持向量机)模型来分析城市的变化动态。利用1980年、1990年、2003年和2020年的Landsat影像,采用支持向量机分类技术生成LULC地图。利用Envi和ArcGIS软件识别土地覆盖变化,并在Idrisi selva edition 17.0软件中应用城市模拟模型(CA- Markov模型)。利用2003年和2020年的LULC地图,利用(元胞自动机)CA- Markov模型模拟了2050年的LULC投影地图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Environmental & Engineering Geoscience
Environmental & Engineering Geoscience 地学-地球科学综合
CiteScore
2.10
自引率
0.00%
发文量
25
审稿时长
>12 weeks
期刊介绍: The Environmental & Engineering Geoscience Journal publishes peer-reviewed manuscripts that address issues relating to the interaction of people with hydrologic and geologic systems. Theoretical and applied contributions are appropriate, and the primary criteria for acceptance are scientific and technical merit.
期刊最新文献
Using an Inventory of Unstable Slopes to Prioritize Probabilistic Rockfall Modeling and Acid-Base Accounting in Great Smoky Mountains National Park Impact of global warming on average annual air temperature in Varaždin Modern technologies and methods of data collection in the function of making better traffic analysis of forensic traffic experts A strategic evaluation framework to measure and guide efforts to protect biodiversity Climate change, disaster risk reduction and resilience
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1