{"title":"Quadrupole dominance in the light Sn and in the Cd isotopes","authors":"A. Zuker","doi":"10.1103/PHYSREVC.103.024322","DOIUrl":null,"url":null,"abstract":"[Background] The BE2 rates of the Sn isotopes for $N\\le 64$ exhibit enhancements hitherto unexplained. The same is true for the Cd isotopes. [Purpose] Describe the electromagnetic properties of the Sn and Cd isotopes [Method] Shell model calculations with a minimally renormalized realistic interaction, supplemented by Quasi and Pseudo-SU3 symmetries and Nilsson-SU3 selfconsistent calculations. [Results for $N\\le 64$] Shell model calculations with the neutron effective charge as single free parameter describe well the BE2(2>0) and BE2(4>2) rates for $N\\le 64$ in the Cd and Sn isotopes. The former exhibit weak permanent deformation corroborating the prediction of a Pseudo-SU3 symmetry, which remains of heuristic value in the latter, where the pairing force erodes the quadrupole dominance. Calculations in $10^7$ and $10^{10}$-dimensional spaces exhibit almost identical patterns: A vindication of the shell model. [Results for $N\\ge 64$] Nilsson-SU3 calculations describe BE2 patterns in [112-120]Cd and [116-118]Sn isotopes having sizable quadrupole moment of non-rotational origin denoted as q-vibrations. No calculations are proposed for the heavier species, for which the conventional seniority dscription is assumed for Sn, while in Cd the quadrupole moments change sign. [Conclusion] A radical reexamination of traditional interpretations in the region has been shown to be necessary, in which quadrupole dominance plays a major role. What emerges is a bumpy but coherent view.","PeriodicalId":8463,"journal":{"name":"arXiv: Nuclear Theory","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Nuclear Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PHYSREVC.103.024322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
[Background] The BE2 rates of the Sn isotopes for $N\le 64$ exhibit enhancements hitherto unexplained. The same is true for the Cd isotopes. [Purpose] Describe the electromagnetic properties of the Sn and Cd isotopes [Method] Shell model calculations with a minimally renormalized realistic interaction, supplemented by Quasi and Pseudo-SU3 symmetries and Nilsson-SU3 selfconsistent calculations. [Results for $N\le 64$] Shell model calculations with the neutron effective charge as single free parameter describe well the BE2(2>0) and BE2(4>2) rates for $N\le 64$ in the Cd and Sn isotopes. The former exhibit weak permanent deformation corroborating the prediction of a Pseudo-SU3 symmetry, which remains of heuristic value in the latter, where the pairing force erodes the quadrupole dominance. Calculations in $10^7$ and $10^{10}$-dimensional spaces exhibit almost identical patterns: A vindication of the shell model. [Results for $N\ge 64$] Nilsson-SU3 calculations describe BE2 patterns in [112-120]Cd and [116-118]Sn isotopes having sizable quadrupole moment of non-rotational origin denoted as q-vibrations. No calculations are proposed for the heavier species, for which the conventional seniority dscription is assumed for Sn, while in Cd the quadrupole moments change sign. [Conclusion] A radical reexamination of traditional interpretations in the region has been shown to be necessary, in which quadrupole dominance plays a major role. What emerges is a bumpy but coherent view.