The design and implementation of the enterprise level data platform and big data driven applications and analytics

Hesen Liu, Jiahui Guo, Yu Wenpeng, Lin Zhu, Yilu Liu, Tao Xia, Rui Sun, R. Gardner
{"title":"The design and implementation of the enterprise level data platform and big data driven applications and analytics","authors":"Hesen Liu, Jiahui Guo, Yu Wenpeng, Lin Zhu, Yilu Liu, Tao Xia, Rui Sun, R. Gardner","doi":"10.1109/TDC.2016.7520032","DOIUrl":null,"url":null,"abstract":"In order to improve the capability of utilizing big data and business intelligence in the power industry, this paper presents a comprehensive solution through building an enterprise-level data platform based on the OSIsoft PI system to support big data driven applications and analytics. The platform has the features of scalability, real time, service-oriented architecture and high reliability. Compared to traditional platforms in the power industry, the significant benefit of the innovative platform is that end users can use the data with the global model to drive the self-customized services rather than depend on IT professionals to deploy the service. The paper also describes how to implement data integration, global model construction and big data driven analytics, which are difficult to achieve with traditional solutions. Meanwhile, the paper exhibits preliminary visualization results through data analysis in real scenarios.","PeriodicalId":6497,"journal":{"name":"2016 IEEE/PES Transmission and Distribution Conference and Exposition (T&D)","volume":"8 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/PES Transmission and Distribution Conference and Exposition (T&D)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TDC.2016.7520032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In order to improve the capability of utilizing big data and business intelligence in the power industry, this paper presents a comprehensive solution through building an enterprise-level data platform based on the OSIsoft PI system to support big data driven applications and analytics. The platform has the features of scalability, real time, service-oriented architecture and high reliability. Compared to traditional platforms in the power industry, the significant benefit of the innovative platform is that end users can use the data with the global model to drive the self-customized services rather than depend on IT professionals to deploy the service. The paper also describes how to implement data integration, global model construction and big data driven analytics, which are difficult to achieve with traditional solutions. Meanwhile, the paper exhibits preliminary visualization results through data analysis in real scenarios.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
企业级数据平台及大数据驱动应用与分析的设计与实现
为了提高电力行业利用大数据和商业智能的能力,本文通过构建基于OSIsoft PI系统的企业级数据平台,支持大数据驱动的应用和分析,提出了一种全面的解决方案。该平台具有可扩展性、实时性、面向服务架构和高可靠性等特点。与电力行业的传统平台相比,创新平台的显著优势在于最终用户可以使用具有全球模型的数据来驱动自定义服务,而不是依赖IT专业人员来部署服务。本文还介绍了如何实现传统解决方案难以实现的数据集成、全局模型构建和大数据驱动分析。同时,通过对真实场景的数据分析,展示了初步的可视化结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fast evaluation of probabilistic total transfer capability considering multiple wind farms An automated model based fault locating method for distribution systems Fault location identification of a hybrid HVDC-VSC system containing cable and overhead line segments using transient data Conductor corrosion inspection of aluminum conductor steel reinforced transmission lines Microgrid load management and control strategies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1