{"title":"Design of artificial cells: artificial biochemical systems, their thermodynamics and kinetics properties","authors":"A. Ugya, Lin Pohan, Qifeng Wang, K. Meguellati","doi":"10.1080/2314808X.2022.2104071","DOIUrl":null,"url":null,"abstract":"ABSTRACT From the top-down view, an organism is constituted by an assembly of cells where a network of molecules interacts to create a regulated complex system. Cells are a universe of molecular interactions maintained under non-equilibrium regimes. The complex network of interactions drives life where DNA and epigenetic signals are considered as the memory of a cell. The full understanding of these interactions is the first step toward the design of artificial synthetic pathways controlling a program. In our review, we present some insights into the different methods and designs applicable for the development of synthetic artificial cells. A self-replicative process of these cells, thermodynamic and kinetic features, as well as equilibrium systems of artificial cells, will enable scientists to have an in-depth knowledge of this domain. Furthermore, the cascade of encoded molecular chemical interactions orchestrated by the genetic program DNA, biomolecules, epigenetic signals, and nano-factory modulation will be discussed in terms of their application in the entire set of interactomes within a cell.","PeriodicalId":11512,"journal":{"name":"Egyptian Journal of Basic and Applied Sciences","volume":"116 1","pages":"393 - 412"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Egyptian Journal of Basic and Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/2314808X.2022.2104071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
ABSTRACT From the top-down view, an organism is constituted by an assembly of cells where a network of molecules interacts to create a regulated complex system. Cells are a universe of molecular interactions maintained under non-equilibrium regimes. The complex network of interactions drives life where DNA and epigenetic signals are considered as the memory of a cell. The full understanding of these interactions is the first step toward the design of artificial synthetic pathways controlling a program. In our review, we present some insights into the different methods and designs applicable for the development of synthetic artificial cells. A self-replicative process of these cells, thermodynamic and kinetic features, as well as equilibrium systems of artificial cells, will enable scientists to have an in-depth knowledge of this domain. Furthermore, the cascade of encoded molecular chemical interactions orchestrated by the genetic program DNA, biomolecules, epigenetic signals, and nano-factory modulation will be discussed in terms of their application in the entire set of interactomes within a cell.