Thermal versus isothermal rotating shallow water equations: comparison of dynamical processes by simulations with a novel well-balanced central-upwind scheme
{"title":"Thermal versus isothermal rotating shallow water equations: comparison of dynamical processes by simulations with a novel well-balanced central-upwind scheme","authors":"A. Kurganov, Yongle Liu, V. Zeitlin","doi":"10.1080/03091929.2020.1774876","DOIUrl":null,"url":null,"abstract":"ABSTRACT We introduce a new high-resolution well-balanced central-upwind scheme for two-dimensional rotating shallow water equations with horizontal temperature/density gradients – thermal rotating shallow water equations. The scheme maintains the equilibrium states in the presence of topography and temperature/density variations, and allows for high-resolution tracking of the active scalar field together with velocity and pressure fields. We use the new scheme to highlight both the similarities and differences in the predictions of the thermal and isothermal shallow water models for the fundamental dynamical processes: evolution of isolated vortices in the midlatitude β-plane in the presence of topography and relaxation of localised pressure and temperature perturbations in the equatorial β-plane.","PeriodicalId":56132,"journal":{"name":"Geophysical and Astrophysical Fluid Dynamics","volume":"68 1","pages":"125 - 154"},"PeriodicalIF":1.1000,"publicationDate":"2020-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical and Astrophysical Fluid Dynamics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/03091929.2020.1774876","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 10
Abstract
ABSTRACT We introduce a new high-resolution well-balanced central-upwind scheme for two-dimensional rotating shallow water equations with horizontal temperature/density gradients – thermal rotating shallow water equations. The scheme maintains the equilibrium states in the presence of topography and temperature/density variations, and allows for high-resolution tracking of the active scalar field together with velocity and pressure fields. We use the new scheme to highlight both the similarities and differences in the predictions of the thermal and isothermal shallow water models for the fundamental dynamical processes: evolution of isolated vortices in the midlatitude β-plane in the presence of topography and relaxation of localised pressure and temperature perturbations in the equatorial β-plane.
期刊介绍:
Geophysical and Astrophysical Fluid Dynamics exists for the publication of original research papers and short communications, occasional survey articles and conference reports on the fluid mechanics of the earth and planets, including oceans, atmospheres and interiors, and the fluid mechanics of the sun, stars and other astrophysical objects.
In addition, their magnetohydrodynamic behaviours are investigated. Experimental, theoretical and numerical studies of rotating, stratified and convecting fluids of general interest to geophysicists and astrophysicists appear. Properly interpreted observational results are also published.