Ying Zhang, Xuhua Ren, B. Clifford, Qian Wang, Xiaoqun Zhang
{"title":"Image fusion network for dual-modal restoration","authors":"Ying Zhang, Xuhua Ren, B. Clifford, Qian Wang, Xiaoqun Zhang","doi":"10.3934/ipi.2021067","DOIUrl":null,"url":null,"abstract":"In recent years multi-modal data processing methods have gained considerable research interest as technological advancements in imaging, computing, and data storage have made the collection of redundant, multi-modal data more commonplace. In this work we present an image restoration method tailored for scenarios where pre-existing, high-quality images from different modalities or contrasts are available in addition to the target image. Our method is based on a novel network architecture which combines the benefits of traditional multi-scale signal representation, such as wavelets, with more recent concepts from data fusion methods. Results from numerical simulations in which T1-weighted MRI images are used to restore noisy and undersampled T2-weighted images demonstrate that the proposed network successfully utilizes information from high-quality reference images to improve the restoration quality of the target image beyond that of existing popular methods.","PeriodicalId":50274,"journal":{"name":"Inverse Problems and Imaging","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inverse Problems and Imaging","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/ipi.2021067","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years multi-modal data processing methods have gained considerable research interest as technological advancements in imaging, computing, and data storage have made the collection of redundant, multi-modal data more commonplace. In this work we present an image restoration method tailored for scenarios where pre-existing, high-quality images from different modalities or contrasts are available in addition to the target image. Our method is based on a novel network architecture which combines the benefits of traditional multi-scale signal representation, such as wavelets, with more recent concepts from data fusion methods. Results from numerical simulations in which T1-weighted MRI images are used to restore noisy and undersampled T2-weighted images demonstrate that the proposed network successfully utilizes information from high-quality reference images to improve the restoration quality of the target image beyond that of existing popular methods.
期刊介绍:
Inverse Problems and Imaging publishes research articles of the highest quality that employ innovative mathematical and modeling techniques to study inverse and imaging problems arising in engineering and other sciences. Every published paper has a strong mathematical orientation employing methods from such areas as control theory, discrete mathematics, differential geometry, harmonic analysis, functional analysis, integral geometry, mathematical physics, numerical analysis, optimization, partial differential equations, and stochastic and statistical methods. The field of applications includes medical and other imaging, nondestructive testing, geophysical prospection and remote sensing as well as image analysis and image processing.
This journal is committed to recording important new results in its field and will maintain the highest standards of innovation and quality. To be published in this journal, a paper must be correct, novel, nontrivial and of interest to a substantial number of researchers and readers.