{"title":"Practical Implementation and Challenges of Artificial Intelligence-Driven Electronic Health Record Evaluation: Protected Health Information","authors":"Adam P. Tashman PhD","doi":"10.1053/j.ackd.2022.05.003","DOIUrl":null,"url":null,"abstract":"<div><p>Detecting protected health information<span> in electronic health record<span> systems is often an early step in health care analytics, and it is a nontrivial problem. Specific challenges include finding clinician names and diseases, which lack a fixed format and are often context-dependent. The general problem of finding entities, termed named-entity recognition, has received a substantial amount of attention in the natural language processing and deep learning communities. This paper begins by outlining recent methods for finding protected health information, and it then introduces a hybrid system which combines regular expressions with a natural language processing framework called FLAIR. FLAIR is open-source, it includes state-of-the-art deep learning models, and it supports straightforward development of new models for language tasks including named-entity recognition. Finally, there is a discussion of how to apply the system to structured text in a database table as well as unstructured text in clinical notes.</span></span></p></div>","PeriodicalId":7221,"journal":{"name":"Advances in chronic kidney disease","volume":"29 5","pages":"Pages 427-430"},"PeriodicalIF":2.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in chronic kidney disease","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1548559522000982","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"UROLOGY & NEPHROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Detecting protected health information in electronic health record systems is often an early step in health care analytics, and it is a nontrivial problem. Specific challenges include finding clinician names and diseases, which lack a fixed format and are often context-dependent. The general problem of finding entities, termed named-entity recognition, has received a substantial amount of attention in the natural language processing and deep learning communities. This paper begins by outlining recent methods for finding protected health information, and it then introduces a hybrid system which combines regular expressions with a natural language processing framework called FLAIR. FLAIR is open-source, it includes state-of-the-art deep learning models, and it supports straightforward development of new models for language tasks including named-entity recognition. Finally, there is a discussion of how to apply the system to structured text in a database table as well as unstructured text in clinical notes.
期刊介绍:
The purpose of Advances Chronic Kidney Disease is to provide in-depth, scholarly review articles about the care and management of persons with early kidney disease and kidney failure, as well as those at risk for kidney disease. Emphasis is on articles related to the early identification of kidney disease; prevention or delay in progression of kidney disease