Trust in 5G Open RANs through Machine Learning: RF Fingerprinting on the POWDER PAWR Platform

Guillem Reus Muns, Dheryta Jaisinghani, K. Sankhe, K. Chowdhury
{"title":"Trust in 5G Open RANs through Machine Learning: RF Fingerprinting on the POWDER PAWR Platform","authors":"Guillem Reus Muns, Dheryta Jaisinghani, K. Sankhe, K. Chowdhury","doi":"10.1109/GLOBECOM42002.2020.9348261","DOIUrl":null,"url":null,"abstract":"5G and open radio access networks (Open RANs) will result in vendor-neutral hardware deployment that will require additional diligence towards managing security risks. This new paradigm will allow the same network infrastructure to support virtual network slices for transmit different waveforms, such as 5G New Radio, LTE, WiFi, at different times. In this multivendor, multi-protocol/waveform setting, we propose an additional physical layer authentication method that detects a specific emitter through a technique called as RF fingerprinting. Our deep learning approach uses convolutional neural networks augmented with triplet loss, where examples of similar/dissimilar signal samples are shown to the classifier over the training duration. We demonstrate the feasibility of RF fingerprinting base stations over the large-scale over-the-air experimental POWDER platform in Salt Lake City, Utah, USA. Using real world datasets, we show how our approach overcomes the challenges posed by changing channel conditions and protocol choices with 99.86% detection accuracy for different training and testing days.","PeriodicalId":12759,"journal":{"name":"GLOBECOM 2020 - 2020 IEEE Global Communications Conference","volume":"43 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"GLOBECOM 2020 - 2020 IEEE Global Communications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOBECOM42002.2020.9348261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

Abstract

5G and open radio access networks (Open RANs) will result in vendor-neutral hardware deployment that will require additional diligence towards managing security risks. This new paradigm will allow the same network infrastructure to support virtual network slices for transmit different waveforms, such as 5G New Radio, LTE, WiFi, at different times. In this multivendor, multi-protocol/waveform setting, we propose an additional physical layer authentication method that detects a specific emitter through a technique called as RF fingerprinting. Our deep learning approach uses convolutional neural networks augmented with triplet loss, where examples of similar/dissimilar signal samples are shown to the classifier over the training duration. We demonstrate the feasibility of RF fingerprinting base stations over the large-scale over-the-air experimental POWDER platform in Salt Lake City, Utah, USA. Using real world datasets, we show how our approach overcomes the challenges posed by changing channel conditions and protocol choices with 99.86% detection accuracy for different training and testing days.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过机器学习对5G开放局域网的信任:POWDER PAWR平台上的射频指纹识别
5G和开放式无线接入网络(open ran)将导致供应商中立的硬件部署,这将需要额外的尽职调查来管理安全风险。这种新模式将允许相同的网络基础设施在不同时间支持传输不同波形的虚拟网络切片,例如5G new Radio、LTE、WiFi。在这种多供应商、多协议/波形设置中,我们提出了一种额外的物理层身份验证方法,该方法通过一种称为射频指纹的技术检测特定的发射器。我们的深度学习方法使用带有三重损失增强的卷积神经网络,其中在训练期间向分类器显示相似/不相似信号样本的示例。我们在美国犹他州盐湖城的大规模空中实验POWDER平台上演示了射频指纹基站的可行性。使用真实世界的数据集,我们展示了我们的方法如何克服改变信道条件和协议选择所带来的挑战,在不同的训练和测试日具有99.86%的检测准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
AirID: Injecting a Custom RF Fingerprint for Enhanced UAV Identification using Deep Learning Oversampling Algorithm based on Reinforcement Learning in Imbalanced Problems FAST-RAM: A Fast AI-assistant Solution for Task Offloading and Resource Allocation in MEC Achieving Privacy-Preserving Vehicle Selection for Effective Content Dissemination in Smart Cities Age-optimal Transmission Policy for Markov Source with Differential Encoding
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1