Shahid Latif , Wadii Boulila , Anis Koubaa , Zhuo Zou , Jawad Ahmad
{"title":"DTL-IDS: An optimized Intrusion Detection Framework using Deep Transfer Learning and Genetic Algorithm","authors":"Shahid Latif , Wadii Boulila , Anis Koubaa , Zhuo Zou , Jawad Ahmad","doi":"10.1016/j.jnca.2023.103784","DOIUrl":null,"url":null,"abstract":"<div><p>In the dynamic field of the Industrial Internet of Things (IIoT), the networks are increasingly vulnerable to a diverse range of cyberattacks. This vulnerability necessitates the development of advanced intrusion detection systems (IDSs). Addressing this need, our research contributes to the existing cybersecurity literature by introducing an optimized Intrusion Detection System based on Deep Transfer Learning (DTL), specifically tailored for heterogeneous IIoT networks. Our framework employs a tri-layer architectural approach that synergistically integrates Convolutional Neural Networks (CNNs), Genetic Algorithms (GA), and bootstrap aggregation ensemble techniques. The methodology is executed in three critical stages: First, we convert a state-of-the-art cybersecurity dataset, Edge_IIoTset, into image data, thereby facilitating CNN-based analytics. Second, GA is utilized to fine-tune the hyperparameters of each base learning model, enhancing the model’s adaptability and performance. Finally, the outputs of the top-performing models are amalgamated using ensemble techniques, bolstering the robustness of the IDS. Through rigorous evaluation protocols, our framework demonstrated exceptional performance, reliably achieving a 100% attack detection accuracy rate. This result establishes our framework as highly effective against 14 distinct types of cyberattacks. The findings bear significant implications for the ongoing development of secure, efficient, and adaptive IDS solutions in the complex landscape of IIoT networks.</p></div>","PeriodicalId":54784,"journal":{"name":"Journal of Network and Computer Applications","volume":"221 ","pages":"Article 103784"},"PeriodicalIF":7.7000,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1084804523002035/pdfft?md5=28cf5bdbb91039e0db15a006ab7696b0&pid=1-s2.0-S1084804523002035-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Network and Computer Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1084804523002035","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
In the dynamic field of the Industrial Internet of Things (IIoT), the networks are increasingly vulnerable to a diverse range of cyberattacks. This vulnerability necessitates the development of advanced intrusion detection systems (IDSs). Addressing this need, our research contributes to the existing cybersecurity literature by introducing an optimized Intrusion Detection System based on Deep Transfer Learning (DTL), specifically tailored for heterogeneous IIoT networks. Our framework employs a tri-layer architectural approach that synergistically integrates Convolutional Neural Networks (CNNs), Genetic Algorithms (GA), and bootstrap aggregation ensemble techniques. The methodology is executed in three critical stages: First, we convert a state-of-the-art cybersecurity dataset, Edge_IIoTset, into image data, thereby facilitating CNN-based analytics. Second, GA is utilized to fine-tune the hyperparameters of each base learning model, enhancing the model’s adaptability and performance. Finally, the outputs of the top-performing models are amalgamated using ensemble techniques, bolstering the robustness of the IDS. Through rigorous evaluation protocols, our framework demonstrated exceptional performance, reliably achieving a 100% attack detection accuracy rate. This result establishes our framework as highly effective against 14 distinct types of cyberattacks. The findings bear significant implications for the ongoing development of secure, efficient, and adaptive IDS solutions in the complex landscape of IIoT networks.
期刊介绍:
The Journal of Network and Computer Applications welcomes research contributions, surveys, and notes in all areas relating to computer networks and applications thereof. Sample topics include new design techniques, interesting or novel applications, components or standards; computer networks with tools such as WWW; emerging standards for internet protocols; Wireless networks; Mobile Computing; emerging computing models such as cloud computing, grid computing; applications of networked systems for remote collaboration and telemedicine, etc. The journal is abstracted and indexed in Scopus, Engineering Index, Web of Science, Science Citation Index Expanded and INSPEC.