Entropy generation in transpiration cooling of concentric spherical shells

Amro M Al-Qutub
{"title":"Entropy generation in transpiration cooling of concentric spherical shells","authors":"Amro M Al-Qutub","doi":"10.1016/S1164-0235(01)00032-2","DOIUrl":null,"url":null,"abstract":"<div><p>The present paper deals with transpiration cooling of two concentric spherical shells. The analysis includes the calculation for the radial distribution of temperature and volumetric entropy generation, and the total rate of entropy generation in the thermal system. Standard air is considered as the cooling fluid. Results showed that the entropy generation increases with increasing temperature difference between the sphere surfaces. Variation of either mass flow rate or radius ratio affects volumetric entropy distribution and the total rate of entropy generation of the processes. The increase of mass flow rate or radius ratio increases the total rate of entropy generation. The performance of the system is analyzed by calculating irreversibility to heat transfer ratio at both inner and outer sphere surfaces. It was found that irreversibility to heat transfer ratio at the inner sphere surface increases with increasing mass flow rate, or decreasing radius ratio. The opposite is true for the outer sphere surface.</p></div>","PeriodicalId":100518,"journal":{"name":"Exergy, An International Journal","volume":"1 4","pages":"Pages 303-309"},"PeriodicalIF":0.0000,"publicationDate":"2001-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1164-0235(01)00032-2","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Exergy, An International Journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1164023501000322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The present paper deals with transpiration cooling of two concentric spherical shells. The analysis includes the calculation for the radial distribution of temperature and volumetric entropy generation, and the total rate of entropy generation in the thermal system. Standard air is considered as the cooling fluid. Results showed that the entropy generation increases with increasing temperature difference between the sphere surfaces. Variation of either mass flow rate or radius ratio affects volumetric entropy distribution and the total rate of entropy generation of the processes. The increase of mass flow rate or radius ratio increases the total rate of entropy generation. The performance of the system is analyzed by calculating irreversibility to heat transfer ratio at both inner and outer sphere surfaces. It was found that irreversibility to heat transfer ratio at the inner sphere surface increases with increasing mass flow rate, or decreasing radius ratio. The opposite is true for the outer sphere surface.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
同心球壳蒸腾冷却中的熵生成
本文研究了两个同心球壳的蒸腾冷却问题。分析包括温度径向分布和体积熵产的计算,以及热系统总熵产率的计算。标准空气被认为是冷却液。结果表明,熵产随着球表面温差的增大而增大。质量流量或半径比的变化都会影响过程的体积熵分布和总熵产率。质量流率或半径比的增加会增加总熵产率。通过计算球内外表面的不可逆性传热比,分析了系统的性能。结果表明,随着质量流量的增大或半径比的减小,球内表面传热比的不可逆性增大。外球面的情况正好相反。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Author index Announcement Some thermodynamic remarks on non-equilibrium fluid streams The exergy flux of radiative heat transfer for the special case of blackbody radiation Work and entropy production aspects of irreversible processes in closed and steady-state open systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1