Practical Lattice-Based Zero-Knowledge Proofs for Integer Relations

Vadim Lyubashevsky, Ngoc Khanh Nguyen, Gregor Seiler
{"title":"Practical Lattice-Based Zero-Knowledge Proofs for Integer Relations","authors":"Vadim Lyubashevsky, Ngoc Khanh Nguyen, Gregor Seiler","doi":"10.1145/3372297.3417894","DOIUrl":null,"url":null,"abstract":"We present a novel lattice-based zero-knowledge proof system for showing that (arbitrary-sized) committed integers satisfy additive and multiplicative relationships. The proof sizes of our schemes are between two to three orders of magnitude smaller than in the lattice proof system of Libert et al. (CRYPTO 2018) for the same relations. Because the proof sizes of our protocols grow linearly in the integer length, our proofs will eventually be longer than those produced by quantum-safe succinct proof systems for general circuits (e.g. Ligero, Aurora, etc.). But for relations between reasonably-sized integers (e.g. $512$-bit), our proofs still result in the smallest zero-knowledge proof system based on a quantum-safe assumption. Of equal importance, the run-time of our proof system is at least an order of magnitude faster than any other quantum-safe scheme.","PeriodicalId":20481,"journal":{"name":"Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security","volume":"01 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3372297.3417894","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

Abstract

We present a novel lattice-based zero-knowledge proof system for showing that (arbitrary-sized) committed integers satisfy additive and multiplicative relationships. The proof sizes of our schemes are between two to three orders of magnitude smaller than in the lattice proof system of Libert et al. (CRYPTO 2018) for the same relations. Because the proof sizes of our protocols grow linearly in the integer length, our proofs will eventually be longer than those produced by quantum-safe succinct proof systems for general circuits (e.g. Ligero, Aurora, etc.). But for relations between reasonably-sized integers (e.g. $512$-bit), our proofs still result in the smallest zero-knowledge proof system based on a quantum-safe assumption. Of equal importance, the run-time of our proof system is at least an order of magnitude faster than any other quantum-safe scheme.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
整数关系的实用格零知识证明
我们提出了一种新的基于格的零知识证明系统,用于证明(任意大小)承诺整数满足加性和乘法关系。对于相同的关系,我们方案的证明大小比Libert等人(CRYPTO 2018)的晶格证明系统小两到三个数量级。由于我们协议的证明大小在整数长度上线性增长,因此我们的证明最终将比一般电路(例如Ligero, Aurora等)的量子安全简洁证明系统产生的证明更长。但是对于合理大小的整数之间的关系(例如$512$-bit),我们的证明仍然基于量子安全假设得出最小的零知识证明系统。同样重要的是,我们的证明系统的运行时间至少比任何其他量子安全方案快一个数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Session details: Session 1D: Applied Cryptography and Cryptanalysis HACLxN: Verified Generic SIMD Crypto (for all your favourite platforms) Pointproofs: Aggregating Proofs for Multiple Vector Commitments Session details: Session 4D: Distributed Protocols A Performant, Misuse-Resistant API for Primality Testing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1